These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


605 related items for PubMed ID: 22763466

  • 1. Noble metal (Pd, Ru, Rh, Pt, Au, Ag) doped graphene hybrids for electrocatalysis.
    Giovanni M, Poh HL, Ambrosi A, Zhao G, Sofer Z, Šaněk F, Khezri B, Webster RD, Pumera M.
    Nanoscale; 2012 Aug 21; 4(16):5002-8. PubMed ID: 22763466
    [Abstract] [Full Text] [Related]

  • 2. Transition metal (Mn, Fe, Co, Ni)-doped graphene hybrids for electrocatalysis.
    Toh RJ, Poh HL, Sofer Z, Pumera M.
    Chem Asian J; 2013 Jun 21; 8(6):1295-300. PubMed ID: 23495248
    [Abstract] [Full Text] [Related]

  • 3. Synthesis of graphene-supported noble metal hybrid nanostructures and their applications as advanced electrocatalysts for fuel cells.
    Zhu C, Dong S.
    Nanoscale; 2013 Nov 21; 5(22):10765-75. PubMed ID: 24060985
    [Abstract] [Full Text] [Related]

  • 4. Synthesis of noble metal/graphene nanocomposites without surfactants by one-step reduction of metal salt and graphene oxide.
    Kim SH, Jeong GH, Choi D, Yoon S, Jeon HB, Lee SM, Kim SW.
    J Colloid Interface Sci; 2013 Jan 01; 389(1):85-90. PubMed ID: 23026300
    [Abstract] [Full Text] [Related]

  • 5. Rapid preparation of noble metal nanocrystals via facile coreduction with graphene oxide and their enhanced catalytic properties.
    Xiang G, He J, Li T, Zhuang J, Wang X.
    Nanoscale; 2011 Sep 01; 3(9):3737-42. PubMed ID: 21804982
    [Abstract] [Full Text] [Related]

  • 6. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications.
    Vinayan BP, Ramaprabhu S.
    Nanoscale; 2013 Jun 07; 5(11):5109-18. PubMed ID: 23644681
    [Abstract] [Full Text] [Related]

  • 7. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis.
    Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH.
    ACS Nano; 2011 Jun 28; 5(6):4350-8. PubMed ID: 21574601
    [Abstract] [Full Text] [Related]

  • 8. Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application.
    Ping J, Wang Y, Fan K, Wu J, Ying Y.
    Biosens Bioelectron; 2011 Oct 15; 28(1):204-9. PubMed ID: 21807494
    [Abstract] [Full Text] [Related]

  • 9. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation.
    Hu Y, Zhang H, Wu P, Zhang H, Zhou B, Cai C.
    Phys Chem Chem Phys; 2011 Mar 07; 13(9):4083-94. PubMed ID: 21229152
    [Abstract] [Full Text] [Related]

  • 10. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis.
    Liang Y, Li Y, Wang H, Dai H.
    J Am Chem Soc; 2013 Feb 13; 135(6):2013-36. PubMed ID: 23339685
    [Abstract] [Full Text] [Related]

  • 11. Porous nitrogen-doped carbon nanosheet on graphene as metal-free catalyst for oxygen reduction reaction in air-cathode microbial fuel cells.
    Wen Q, Wang S, Yan J, Cong L, Chen Y, Xi H.
    Bioelectrochemistry; 2014 Feb 13; 95():23-8. PubMed ID: 24239870
    [Abstract] [Full Text] [Related]

  • 12. Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction.
    Yin H, Tang H, Wang D, Gao Y, Tang Z.
    ACS Nano; 2012 Sep 25; 6(9):8288-97. PubMed ID: 22931045
    [Abstract] [Full Text] [Related]

  • 13. Oxygen reduction reactions on pure and nitrogen-doped graphene: a first-principles modeling.
    Boukhvalov DW, Son YW.
    Nanoscale; 2012 Jan 21; 4(2):417-20. PubMed ID: 22113262
    [Abstract] [Full Text] [Related]

  • 14. Tunable synthesis of metal-graphene complex nanostructures and their catalytic ability for solvent-free cyclohexene oxidation in air.
    Huang H, Zhang H, Ma Z, Liu Y, Ming H, Li H, Kang Z.
    Nanoscale; 2012 Aug 21; 4(16):4964-7. PubMed ID: 22695820
    [Abstract] [Full Text] [Related]

  • 15. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction.
    Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen X, Huang S.
    ACS Nano; 2012 Jan 24; 6(1):205-11. PubMed ID: 22201338
    [Abstract] [Full Text] [Related]

  • 16. Uranium- and thorium-doped graphene for efficient oxygen and hydrogen peroxide reduction.
    Sofer Z, Jankovský O, Šimek P, Klímová K, Macková A, Pumera M.
    ACS Nano; 2014 Jul 22; 8(7):7106-14. PubMed ID: 24979344
    [Abstract] [Full Text] [Related]

  • 17. A graphene-based Au(111) platform for electrochemical biosensing based catalytic recycling of products on gold nanoflowers.
    Liu B, Tang D, Tang J, Su B, Li Q, Chen G.
    Analyst; 2011 Jun 07; 136(11):2218-20. PubMed ID: 21384013
    [Abstract] [Full Text] [Related]

  • 18. A facile approach for in situ synthesis of graphene-branched-Pt hybrid nanostructures with excellent electrochemical performance.
    Sahu SC, Samantara AK, Satpati B, Bhattacharjee S, Jena BK.
    Nanoscale; 2013 Nov 21; 5(22):11265-74. PubMed ID: 24088741
    [Abstract] [Full Text] [Related]

  • 19. Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction.
    Zhu C, Dong S.
    Nanoscale; 2013 Mar 07; 5(5):1753-67. PubMed ID: 23364753
    [Abstract] [Full Text] [Related]

  • 20. Nitrogen-doped multiple graphene aerogel/gold nanostar as the electrochemical sensing platform for ultrasensitive detection of circulating free DNA in human serum.
    Ruiyi L, Ling L, Hongxia B, Zaijun L.
    Biosens Bioelectron; 2016 May 15; 79():457-66. PubMed ID: 26745792
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 31.