These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


175 related items for PubMed ID: 22766959

  • 1. Seasonal variation in crassulacean acid metabolism by the aquatic isoetid Littorella uniflora.
    Klavsen SK, Madsen TV.
    Photosynth Res; 2012 Sep; 112(3):163-73. PubMed ID: 22766959
    [Abstract] [Full Text] [Related]

  • 2. Cold acclimation of Arabidopsis thaliana results in incomplete recovery of photosynthetic capacity, associated with an increased reduction of the chloroplast stroma.
    Savitch LV, Barker-Astrom J, Ivanov AG, Hurry V, Oquist G, Huner NP, Gardeström P.
    Planta; 2001 Dec; 214(2):295-303. PubMed ID: 11800395
    [Abstract] [Full Text] [Related]

  • 3. Biochemical photosynthetic responses to temperature: how do interspecific differences compare with seasonal shifts?
    Lin YS, Medlyn BE, De Kauwe MG, Ellsworth DS.
    Tree Physiol; 2013 Aug; 33(8):793-806. PubMed ID: 23843350
    [Abstract] [Full Text] [Related]

  • 4. Photosynthesis of Littorella uniflora grown under two PAR regimes: C3 and CAM gas exchange and the regulation of internal CO2 and O2 concentrations.
    Robe WE, Griffiths H.
    Oecologia; 1990 Nov; 85(1):128-136. PubMed ID: 28310965
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Seasonal changes in temperature response of photosynthesis and its contribution to annual carbon gain in Daphniphyllum humile, an evergreen understorey shrub.
    Katahata SI, Han Q, Naramoto M, Kakubari Y, Mukai Y.
    Plant Biol (Stuttg); 2014 Mar; 16(2):345-53. PubMed ID: 23731172
    [Abstract] [Full Text] [Related]

  • 14. The role of CO2 uptake by roots and CAM in acquisition of inorganic C by plants of the isoetid life-form: a review, with new data on Eriocaulon decangulare L.
    Raven JA, Handley LL, Macfarlane JJ, McInroy S, McKenzie L, Richards JH, Samuelsson G.
    New Phytol; 1988 Feb; 108(2):125-148. PubMed ID: 33874162
    [Abstract] [Full Text] [Related]

  • 15. Cold acclimation and BnCBF17-over-expression enhance photosynthetic performance and energy conversion efficiency during long-term growth of Brassica napus under elevated CO2 conditions.
    Dahal K, Gadapati W, Savitch LV, Singh J, Hüner NP.
    Planta; 2012 Nov; 236(5):1639-52. PubMed ID: 22847022
    [Abstract] [Full Text] [Related]

  • 16. Gas exchange, growth, and defense responses of invasive Alliaria petiolata (Brassicaceae) and native Geum vernum (Rosaceae) to elevated atmospheric CO2 and warm spring temperatures.
    Anderson LJ, Cipollini D.
    Am J Bot; 2013 Aug; 100(8):1544-54. PubMed ID: 23857735
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.