These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
204 related items for PubMed ID: 22768284
1. Longitudinal in vivo imaging of retinal ganglion cells and retinal thickness changes following optic nerve injury in mice. Chauhan BC, Stevens KT, Levesque JM, Nuschke AC, Sharpe GP, O'Leary N, Archibald ML, Wang X. PLoS One; 2012; 7(6):e40352. PubMed ID: 22768284 [Abstract] [Full Text] [Related]
2. Longitudinal and simultaneous imaging of retinal ganglion cells and inner retinal layers in a mouse model of glaucoma induced by N-methyl-D-aspartate. Nakano N, Ikeda HO, Hangai M, Muraoka Y, Toda Y, Kakizuka A, Yoshimura N. Invest Ophthalmol Vis Sci; 2011 Nov 11; 52(12):8754-62. PubMed ID: 22003119 [Abstract] [Full Text] [Related]
3. Cyan fluorescent protein (CFP) expressing cells in the retina of Thy1-CFP transgenic mice before and after optic nerve injury. Wang X, Archibald ML, Stevens K, Baldridge WH, Chauhan BC. Neurosci Lett; 2010 Jan 04; 468(2):110-4. PubMed ID: 19879331 [Abstract] [Full Text] [Related]
4. Longitudinal profile of retinal ganglion cell damage assessed with blue-light confocal scanning laser ophthalmoscopy after ischaemic reperfusion injury. Leung CK, Lindsey JD, Chen L, Liu Q, Weinreb RN. Br J Ophthalmol; 2009 Jul 04; 93(7):964-8. PubMed ID: 19224902 [Abstract] [Full Text] [Related]
6. Longitudinal profile of retinal ganglion cell damage after optic nerve crush with blue-light confocal scanning laser ophthalmoscopy. Leung CK, Lindsey JD, Crowston JG, Lijia C, Chiang S, Weinreb RN. Invest Ophthalmol Vis Sci; 2008 Nov 04; 49(11):4898-902. PubMed ID: 18441315 [Abstract] [Full Text] [Related]
7. Comparison of longitudinal in vivo measurements of retinal nerve fiber layer thickness and retinal ganglion cell density after optic nerve transection in rat. Choe TE, Abbott CJ, Piper C, Wang L, Fortune B. PLoS One; 2014 Nov 04; 9(11):e113011. PubMed ID: 25393294 [Abstract] [Full Text] [Related]
8. GCaMP3 expressing cells in the ganglion cell layer of Thy1-GCaMP3 transgenic mice before and after optic nerve injury. Yabana T, Hooper ML, Farrell SR, Chauhan BC. Exp Eye Res; 2021 Jan 04; 202():108297. PubMed ID: 33045220 [Abstract] [Full Text] [Related]
9. Brimonidine protects against loss of Thy-1 promoter activation following optic nerve crush. Dai Y, Lindsey JD, Duong-Polk KX, Chindasub P, Leung CK, Weinreb RN. BMC Ophthalmol; 2013 Jun 27; 13(1):26. PubMed ID: 23805828 [Abstract] [Full Text] [Related]
10. Comparison of retinal nerve fiber layer imaging by spectral domain optical coherence tomography and scanning laser ophthalmoscopy. Ye C, To E, Weinreb RN, Yu M, Liu S, Lam DS, Leung CK. Ophthalmology; 2011 Nov 27; 118(11):2196-202. PubMed ID: 21762989 [Abstract] [Full Text] [Related]
11. Cyan fluorescent protein expression in ganglion and amacrine cells in a thy1-CFP transgenic mouse retina. Raymond ID, Vila A, Huynh UC, Brecha NC. Mol Vis; 2008 Aug 25; 14():1559-74. PubMed ID: 18728756 [Abstract] [Full Text] [Related]
12. Progressive damage along the optic nerve following induction of crush injury or rodent anterior ischemic optic neuropathy in transgenic mice. Dratviman-Storobinsky O, Hasanreisoglu M, Offen D, Barhum Y, Weinberger D, Goldenberg-Cohen N. Mol Vis; 2008 Aug 25; 14():2171-9. PubMed ID: 19052651 [Abstract] [Full Text] [Related]
13. Imaging mouse retinal ganglion cells and their loss in vivo by a fundus camera in the normal and ischemia-reperfusion model. Murata H, Aihara M, Chen YN, Ota T, Numaga J, Araie M. Invest Ophthalmol Vis Sci; 2008 Dec 25; 49(12):5546-52. PubMed ID: 18689704 [Abstract] [Full Text] [Related]
14. Inhibition of histone deacetylases 1 and 3 protects injured retinal ganglion cells. Chindasub P, Lindsey JD, Duong-Polk K, Leung CK, Weinreb RN. Invest Ophthalmol Vis Sci; 2013 Jan 07; 54(1):96-102. PubMed ID: 23197683 [Abstract] [Full Text] [Related]
15. Optical Coherence Tomography Angiography in Mice: Quantitative Analysis After Experimental Models of Retinal Damage. Smith CA, Hooper ML, Chauhan BC. Invest Ophthalmol Vis Sci; 2019 Apr 01; 60(5):1556-1565. PubMed ID: 30995294 [Abstract] [Full Text] [Related]
16. Optic nerve crush mice followed longitudinally with spectral domain optical coherence tomography. Gabriele ML, Ishikawa H, Schuman JS, Ling Y, Bilonick RA, Kim JS, Kagemann L, Wollstein G. Invest Ophthalmol Vis Sci; 2011 Apr 06; 52(5):2250-4. PubMed ID: 21398282 [Abstract] [Full Text] [Related]
17. Comparison of Retinal Nerve Fiber Layer Thinning and Retinal Ganglion Cell Loss After Optic Nerve Transection in Adult Albino Rats. Rovere G, Nadal-Nicolás FM, Agudo-Barriuso M, Sobrado-Calvo P, Nieto-López L, Nucci C, Villegas-Pérez MP, Vidal-Sanz M. Invest Ophthalmol Vis Sci; 2015 Jul 06; 56(8):4487-98. PubMed ID: 26193926 [Abstract] [Full Text] [Related]
18. Retinal Characterization of the Thy1-GCaMP3 Transgenic Mouse Line After Optic Nerve Transection. Blandford SN, Hooper ML, Yabana T, Chauhan BC, Baldridge WH, Farrell SRM. Invest Ophthalmol Vis Sci; 2019 Jan 02; 60(1):183-191. PubMed ID: 30640971 [Abstract] [Full Text] [Related]
19. Neuron stress and loss following rodent anterior ischemic optic neuropathy in double-reporter transgenic mice. Bernstein SL, Guo Y, Slater BJ, Puche A, Kelman SE. Invest Ophthalmol Vis Sci; 2007 May 02; 48(5):2304-10. PubMed ID: 17460295 [Abstract] [Full Text] [Related]
20. A model for the easy assessment of pressure-dependent damage to retinal ganglion cells using cyan fluorescent protein-expressing transgenic mice. Tsuruga H, Murata H, Araie M, Aihara M. Mol Vis; 2012 May 02; 18():2468-78. PubMed ID: 23077405 [Abstract] [Full Text] [Related] Page: [Next] [New Search]