These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. In-silico prediction of blood-brain barrier permeability. Yan A, Liang H, Chong Y, Nie X, Yu C. SAR QSAR Environ Res; 2013 Jan 29; 24(1):61-74. PubMed ID: 23092117 [Abstract] [Full Text] [Related]
3. Investigating the utility of momentum-space descriptors for predicting blood-brain barrier penetration. Al-Fahemi JH, Cooper DL, Allan NL. J Mol Graph Model; 2007 Oct 29; 26(3):607-12. PubMed ID: 17300970 [Abstract] [Full Text] [Related]
4. A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine. Fatemi MH, Gharaghani S. Bioorg Med Chem; 2007 Dec 15; 15(24):7746-54. PubMed ID: 17870538 [Abstract] [Full Text] [Related]
5. Exploring QSARs for inhibitory activity of non-peptide HIV-1 protease inhibitors by GA-PLS and GA-SVM. Deeb O, Goodarzi M. Chem Biol Drug Des; 2010 May 15; 75(5):506-14. PubMed ID: 20486937 [Abstract] [Full Text] [Related]
6. Quantitative structure/property relationship analysis on aqueous solubility using genetic algorithm-combined partial least squares method. Wanchana S, Yamashita F, Hashida M. Pharmazie; 2002 Feb 15; 57(2):127-9. PubMed ID: 11878188 [Abstract] [Full Text] [Related]
7. Predictive model of blood-brain barrier penetration of organic compounds. Ma XL, Chen C, Yang J. Acta Pharmacol Sin; 2005 Apr 15; 26(4):500-12. PubMed ID: 15780201 [Abstract] [Full Text] [Related]
9. Prediction of fungicidal activities of rice blast disease based on least-squares support vector machines and project pursuit regression. Du H, Wang J, Hu Z, Yao X, Zhang X. J Agric Food Chem; 2008 Nov 26; 56(22):10785-92. PubMed ID: 18950187 [Abstract] [Full Text] [Related]
10. Gaussian processes for classification: QSAR modeling of ADMET and target activity. Obrezanova O, Segall MD. J Chem Inf Model; 2010 Jun 28; 50(6):1053-61. PubMed ID: 20433177 [Abstract] [Full Text] [Related]
11. Insights for predicting blood-brain barrier penetration of CNS targeted molecules using QSPR approaches. Fan Y, Unwalla R, Denny RA, Di L, Kerns EH, Diller DJ, Humblet C. J Chem Inf Model; 2010 Jun 28; 50(6):1123-33. PubMed ID: 20578728 [Abstract] [Full Text] [Related]
13. Ionization-specific QSAR models of blood-brain penetration of drugs. Lanevskij K, Japertas P, Didziapetris R, Petrauskas A. Chem Biodivers; 2009 Nov 28; 6(11):2050-4. PubMed ID: 19937840 [Abstract] [Full Text] [Related]
14. Support vector machine for SAR/QSAR of phenethyl-amines. Niu B, Lu WC, Yang SS, Cai YD, Li GZ. Acta Pharmacol Sin; 2007 Jul 28; 28(7):1075-86. PubMed ID: 17588345 [Abstract] [Full Text] [Related]
15. Investigation of different linear and nonlinear chemometric methods for modeling of retention index of essential oil components: concerns to support vector machine. Riahi S, Pourbasheer E, Ganjali MR, Norouzi P. J Hazard Mater; 2009 Jul 30; 166(2-3):853-9. PubMed ID: 19144466 [Abstract] [Full Text] [Related]
16. Application of genetic algorithm-support vector machine (GA-SVM) for prediction of BK-channels activity. Pourbasheer E, Riahi S, Ganjali MR, Norouzi P. Eur J Med Chem; 2009 Dec 30; 44(12):5023-8. PubMed ID: 19837488 [Abstract] [Full Text] [Related]
17. Prediction of blood-brain partitioning: a model based on molecular electronegativity distance vector descriptors. Zhang YH, Xia ZN, Qin LT, Liu SS. J Mol Graph Model; 2010 Sep 30; 29(2):214-20. PubMed ID: 20637670 [Abstract] [Full Text] [Related]
18. Application of genetic algorithm-kernel partial least square as a novel non-linear feature selection method: partitioning of drug molecules. Noorizadeh H, Sobhan Ardakani S, Ahmadi T, Mortazavi SS, Noorizadeh M. Drug Test Anal; 2013 Feb 30; 5(2):89-95. PubMed ID: 21438162 [Abstract] [Full Text] [Related]
19. A quantitative structure-activity relationship (QSAR) study of dermal absorption using theoretical molecular descriptors. Basak SC, Mills D, Mumtaz MM. SAR QSAR Environ Res; 2007 Feb 30; 18(1-2):45-55. PubMed ID: 17365958 [Abstract] [Full Text] [Related]
20. Improvement of multivariate image analysis applied to quantitative structure-activity relationship (QSAR) analysis by using wavelet-principal component analysis ranking variable selection and least-squares support vector machine regression: QSAR study of checkpoint kinase WEE1 inhibitors. Cormanich RA, Goodarzi M, Freitas MP. Chem Biol Drug Des; 2009 Feb 30; 73(2):244-52. PubMed ID: 19207427 [Abstract] [Full Text] [Related] Page: [Next] [New Search]