These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
580 related items for PubMed ID: 22772110
1. Microfluidic sorting with a moving array of optical traps. Dasgupta R, Ahlawat S, Gupta PK. Appl Opt; 2012 Jul 01; 51(19):4377-87. PubMed ID: 22772110 [Abstract] [Full Text] [Related]
2. Flow-assisted single-beam optothermal manipulation of microparticles. Liu Y, Poon AW. Opt Express; 2010 Aug 16; 18(17):18483-91. PubMed ID: 20721243 [Abstract] [Full Text] [Related]
4. Cell cytometry with a light touch: sorting microscopic matter with an optical lattice. MacDonald MP, Neale S, Paterson L, Richies A, Dholakia K, Spalding GC. J Biol Regul Homeost Agents; 2004 May 15; 18(2):200-5. PubMed ID: 15471228 [Abstract] [Full Text] [Related]
5. Particle separation by a moving air-liquid interface in a microchannel. Wang F, Chon CH, Li D. J Colloid Interface Sci; 2010 Dec 15; 352(2):580-4. PubMed ID: 20851407 [Abstract] [Full Text] [Related]
6. Double nanohole optical trapping: dynamics and protein-antibody co-trapping. Zehtabi-Oskuie A, Jiang H, Cyr BR, Rennehan DW, Al-Balushi AA, Gordon R. Lab Chip; 2013 Jul 07; 13(13):2563-8. PubMed ID: 23429640 [Abstract] [Full Text] [Related]
7. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects. Jellema LC, Mey T, Koster S, Verpoorte E. Lab Chip; 2009 Jul 07; 9(13):1914-25. PubMed ID: 19532967 [Abstract] [Full Text] [Related]
8. High-speed fabrication of patterned colloidal photonic structures in centrifugal microfluidic chips. Lee SK, Yi GR, Yang SM. Lab Chip; 2006 Sep 07; 6(9):1171-7. PubMed ID: 16929396 [Abstract] [Full Text] [Related]
9. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis. Lin SC, Lu JC, Sung YL, Lin CT, Tung YC. Lab Chip; 2013 Aug 07; 13(15):3082-9. PubMed ID: 23753015 [Abstract] [Full Text] [Related]
10. Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. Applegate RW, Squier J, Vestad T, Oakey J, Marr DW, Bado P, Dugan MA, Said AA. Lab Chip; 2006 Mar 07; 6(3):422-6. PubMed ID: 16511626 [Abstract] [Full Text] [Related]
11. Optical deflection and sorting of microparticles in a near-field optical geometry. Marchington RF, Mazilu M, Kuriakose S, Garcés-Chávez V, Reece PJ, Krauss TF, Gu M, Dholakia K. Opt Express; 2008 Mar 17; 16(6):3712-26. PubMed ID: 18542466 [Abstract] [Full Text] [Related]
12. Silicon-on-insulator multimode-interference waveguide-based arrayed optical tweezers (SMART) for two-dimensional microparticle trapping and manipulation. Lei T, Poon AW. Opt Express; 2013 Jan 28; 21(2):1520-30. PubMed ID: 23389134 [Abstract] [Full Text] [Related]
13. Enhancement by optical force of separation in pinched flow fractionation. Lee KH, Kim SB, Lee KS, Sung HJ. Lab Chip; 2011 Jan 21; 11(2):354-7. PubMed ID: 20957274 [Abstract] [Full Text] [Related]
15. Structured light spots projected by a Dammann grating with high power efficiency and uniformity for optical sorting. Sun X, Sun Y, Bu J, Zhu S, Yuan XC. Appl Opt; 2010 Oct 01; 49(28):5437-43. PubMed ID: 20885481 [Abstract] [Full Text] [Related]
16. Particle separation in fluidic flow by optical fiber. Lei H, Zhang Y, Li B. Opt Express; 2012 Jan 16; 20(2):1292-300. PubMed ID: 22274474 [Abstract] [Full Text] [Related]
17. Enhanced separation of colloidal particles in an AsPFF device with a tilted sidewall and vertical focusing channels (t-AsPFF-v). Nho HW, Yoon TH. Lab Chip; 2013 Mar 07; 13(5):773-6. PubMed ID: 23340906 [Abstract] [Full Text] [Related]
18. Potential-well model in acoustic tweezers. Kang ST, Yeh CK. IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun 07; 57(6):1451-9. PubMed ID: 20529720 [Abstract] [Full Text] [Related]
19. Continuous separation of colloidal particles using dielectrophoresis. Yunus NA, Nili H, Green NG. Electrophoresis; 2013 Apr 07; 34(7):969-78. PubMed ID: 23436439 [Abstract] [Full Text] [Related]
20. Inertial separation in a contraction-expansion array microchannel. Lee MG, Choi S, Park JK. J Chromatogr A; 2011 Jul 08; 1218(27):4138-43. PubMed ID: 21176909 [Abstract] [Full Text] [Related] Page: [Next] [New Search]