These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


211 related items for PubMed ID: 22772813

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting.
    Qiu Y, Yan K, Deng H, Yang S.
    Nano Lett; 2012 Jan 11; 12(1):407-13. PubMed ID: 22149105
    [Abstract] [Full Text] [Related]

  • 4. A new ZnO nanotetrapods/SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells.
    Chen W, Qiu Y, Yang S.
    Phys Chem Chem Phys; 2010 Aug 28; 12(32):9494-501. PubMed ID: 20607161
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Fast transporting ZnO-TiO2 coaxial photoanodes for dye-sensitized solar cells based on ALD-modified SiO2 aerogel frameworks.
    Williams VO, Jeong NC, Prasittichai C, Farha OK, Pellin MJ, Hupp JT.
    ACS Nano; 2012 Jul 24; 6(7):6185-96. PubMed ID: 22721529
    [Abstract] [Full Text] [Related]

  • 10. 3D Branched nanowire photoelectrochemical electrodes for efficient solar water splitting.
    Kargar A, Sun K, Jing Y, Choi C, Jeong H, Jung GY, Jin S, Wang D.
    ACS Nano; 2013 Oct 22; 7(10):9407-15. PubMed ID: 24040832
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Hierarchical weeping willow nano-tree growth and effect of branching on dye-sensitized solar cell efficiency.
    Herman I, Yeo J, Hong S, Lee D, Nam KH, Choi JH, Hong WH, Lee D, Grigoropoulos CP, Ko SH.
    Nanotechnology; 2012 May 17; 23(19):194005. PubMed ID: 22538967
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Electrodeposition of hierarchical ZnO nanorod-nanosheet structures and their applications in dye-sensitized solar cells.
    Qiu J, Guo M, Wang X.
    ACS Appl Mater Interfaces; 2011 Jul 17; 3(7):2358-67. PubMed ID: 21675757
    [Abstract] [Full Text] [Related]

  • 18. Mechanisms of electron transport and recombination in ZnO nanostructures for dye-sensitized solar cells.
    Vega-Poot AG, Macías-Montero M, Idígoras J, Borrás A, Barranco A, Gonzalez-Elipe AR, Lizama-Tzec FI, Oskam G, Anta JA.
    Chemphyschem; 2014 Apr 14; 15(6):1088-97. PubMed ID: 24729526
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H, Umeyama T, Ito S.
    Acc Chem Res; 2009 Nov 17; 42(11):1809-18. PubMed ID: 19408942
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.