These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


460 related items for PubMed ID: 22776260

  • 1. Hydrothermal pretreatment of microalgae for production of pyrolytic bio-oil with a low nitrogen content.
    Du Z, Mohr M, Ma X, Cheng Y, Lin X, Liu Y, Zhou W, Chen P, Ruan R.
    Bioresour Technol; 2012 Sep; 120():13-8. PubMed ID: 22776260
    [Abstract] [Full Text] [Related]

  • 2. Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction.
    Cheng J, Huang R, Yu T, Li T, Zhou J, Cen K.
    Bioresour Technol; 2014 Jan; 151():415-8. PubMed ID: 24183493
    [Abstract] [Full Text] [Related]

  • 3. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction.
    Li H, Liu Z, Zhang Y, Li B, Lu H, Duan N, Liu M, Zhu Z, Si B.
    Bioresour Technol; 2014 Feb; 154():322-9. PubMed ID: 24413449
    [Abstract] [Full Text] [Related]

  • 4. Hydrothermal liquefaction of Litsea cubeba seed to produce bio-oils.
    Wang F, Chang Z, Duan P, Yan W, Xu Y, Zhang L, Miao J, Fan Y.
    Bioresour Technol; 2013 Dec; 149():509-15. PubMed ID: 24140857
    [Abstract] [Full Text] [Related]

  • 5. Assessing microalgae biorefinery routes for the production of biofuels via hydrothermal liquefaction.
    López Barreiro D, Samorì C, Terranella G, Hornung U, Kruse A, Prins W.
    Bioresour Technol; 2014 Dec; 174():256-65. PubMed ID: 25463806
    [Abstract] [Full Text] [Related]

  • 6. Catalytic hydrothermal processing of microalgae: decomposition and upgrading of lipids.
    Biller P, Riley R, Ross AB.
    Bioresour Technol; 2011 Apr; 102(7):4841-8. PubMed ID: 21295976
    [Abstract] [Full Text] [Related]

  • 7. Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bio-products.
    Biller P, Friedman C, Ross AB.
    Bioresour Technol; 2013 May; 136():188-95. PubMed ID: 23567681
    [Abstract] [Full Text] [Related]

  • 8. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition.
    Adamakis ID, Lazaridis PA, Terzopoulou E, Torofias S, Valari M, Kalaitzi P, Rousonikolos V, Gkoutzikostas D, Zouboulis A, Zalidis G, Triantafyllidis KS.
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001
    [Abstract] [Full Text] [Related]

  • 9. Effect of hydrothermal pretreatment on properties of bio-oil produced from fast pyrolysis of eucalyptus wood in a fluidized bed reactor.
    Chang S, Zhao Z, Zheng A, Li X, Wang X, Huang Z, He F, Li H.
    Bioresour Technol; 2013 Jun; 138():321-8. PubMed ID: 23624050
    [Abstract] [Full Text] [Related]

  • 10. A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed.
    Kim SW, Koo BS, Lee DH.
    Bioresour Technol; 2014 Jun; 162():96-102. PubMed ID: 24747387
    [Abstract] [Full Text] [Related]

  • 11. Microwave-assisted direct liquefaction of Ulva prolifera for bio-oil production by acid catalysis.
    Zhuang Y, Guo J, Chen L, Li D, Liu J, Ye N.
    Bioresour Technol; 2012 Jul; 116():133-9. PubMed ID: 22609667
    [Abstract] [Full Text] [Related]

  • 12. Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst.
    Thangalazhy-Gopakumar S, Adhikari S, Chattanathan SA, Gupta RB.
    Bioresour Technol; 2012 Aug; 118():150-7. PubMed ID: 22705518
    [Abstract] [Full Text] [Related]

  • 13. Microwave-assisted pyrolysis of microalgae for biofuel production.
    Du Z, Li Y, Wang X, Wan Y, Chen Q, Wang C, Lin X, Liu Y, Chen P, Ruan R.
    Bioresour Technol; 2011 Apr; 102(7):4890-6. PubMed ID: 21316940
    [Abstract] [Full Text] [Related]

  • 14. Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils.
    Aysu T, Sanna A.
    Bioresour Technol; 2015 Oct; 194():108-16. PubMed ID: 26188553
    [Abstract] [Full Text] [Related]

  • 15. Retrofitting hetrotrophically cultivated algae biomass as pyrolytic feedstock for biogas, bio-char and bio-oil production encompassing biorefinery.
    Sarkar O, Agarwal M, Naresh Kumar A, Venkata Mohan S.
    Bioresour Technol; 2015 Feb; 178():132-138. PubMed ID: 25446787
    [Abstract] [Full Text] [Related]

  • 16. Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production.
    Wang K, Brown RC, Homsy S, Martinez L, Sidhu SS.
    Bioresour Technol; 2013 Jan; 127():494-9. PubMed ID: 23069615
    [Abstract] [Full Text] [Related]

  • 17. Element and chemical compounds transfer in bio-crude from hydrothermal liquefaction of microalgae.
    Tang X, Zhang C, Li Z, Yang X.
    Bioresour Technol; 2016 Feb; 202():8-14. PubMed ID: 26700753
    [Abstract] [Full Text] [Related]

  • 18. Potential of mixed microalgae to harness biodiesel from ecological water-bodies with simultaneous treatment.
    Mohan SV, Devi MP, Mohanakrishna G, Amarnath N, Babu ML, Sarma PN.
    Bioresour Technol; 2011 Jan; 102(2):1109-17. PubMed ID: 20864335
    [Abstract] [Full Text] [Related]

  • 19. The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae.
    Bae YJ, Ryu C, Jeon JK, Park J, Suh DJ, Suh YW, Chang D, Park YK.
    Bioresour Technol; 2011 Feb; 102(3):3512-20. PubMed ID: 21129955
    [Abstract] [Full Text] [Related]

  • 20. Thermolysis of microalgae and duckweed in a CO₂-swept fixed-bed reactor: bio-oil yield and compositional effects.
    Campanella A, Muncrief R, Harold MP, Griffith DC, Whitton NM, Weber RS.
    Bioresour Technol; 2012 Apr; 109():154-62. PubMed ID: 22285294
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.