These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
259 related items for PubMed ID: 22779487
1. Effect of source-tract acoustical coupling on the oscillation onset of the vocal folds. Lucero JC, Lourenço K, Hermant N, Van Hirtum A, Pelorson X. J Acoust Soc Am; 2012 Jul; 132(1):403-11. PubMed ID: 22779487 [Abstract] [Full Text] [Related]
2. The influence of subglottal acoustics on laboratory models of phonation. Zhang Z, Neubauer J, Berry DA. J Acoust Soc Am; 2006 Sep; 120(3):1558-69. PubMed ID: 17004478 [Abstract] [Full Text] [Related]
3. A lumped mucosal wave model of the vocal folds revisited: recent extensions and oscillation hysteresis. Lucero JC, Koenig LL, Lourenço KG, Ruty N, Pelorson X. J Acoust Soc Am; 2011 Mar; 129(3):1568-79. PubMed ID: 21428520 [Abstract] [Full Text] [Related]
4. Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica. Lucero JC, Van Hirtum A, Ruty N, Cisonni J, Pelorson X. J Acoust Soc Am; 2009 Feb; 125(2):632-5. PubMed ID: 19206840 [Abstract] [Full Text] [Related]
5. Vocal fold collision threshold pressure: An alternative to phonation threshold pressure? Enflo L, Sundberg J. Logoped Phoniatr Vocol; 2009 Dec; 34(4):210-7. PubMed ID: 19916893 [Abstract] [Full Text] [Related]
6. The effect of whisper and creak vocal mechanisms on vocal tract resonances. Swerdlin Y, Smith J, Wolfe J. J Acoust Soc Am; 2010 Apr; 127(4):2590-8. PubMed ID: 20370040 [Abstract] [Full Text] [Related]
7. Experimental investigation of the influence of a posterior gap on glottal flow and sound. Park JB, Mongeau L. J Acoust Soc Am; 2008 Aug; 124(2):1171-9. PubMed ID: 18681605 [Abstract] [Full Text] [Related]
8. Using the relaxation oscillations principle for simple phonation modeling. Garrel R, Scherer R, Nicollas R, Giovanni A, Ouaknine M. J Voice; 2008 Jul; 22(4):385-98. PubMed ID: 17280814 [Abstract] [Full Text] [Related]
9. Experimental analysis of the characteristics of artificial vocal folds. Misun V, Svancara P, Vasek M. J Voice; 2011 May; 25(3):308-18. PubMed ID: 20359864 [Abstract] [Full Text] [Related]
10. High-speed registration of phonation-related glottal area variation during artificial lengthening of the vocal tract. Laukkanen AM, Pulakka H, Alku P, Vilkman E, Hertegård S, Lindestad PA, Larsson H, Granqvist S. Logoped Phoniatr Vocol; 2007 May; 32(4):157-64. PubMed ID: 17917980 [Abstract] [Full Text] [Related]
12. The acoustical role of vocal tract in the horseshoe bat, Rhinolophus pusillus. Ma X, Li T, Lu H. J Acoust Soc Am; 2016 Mar; 139(3):1264-71. PubMed ID: 27036262 [Abstract] [Full Text] [Related]
13. Direct measurement of pressures involved in vocal exercises using semi-occluded vocal tracts. Robieux C, Galant C, Lagier A, Legou T, Giovanni A. Logoped Phoniatr Vocol; 2015 Oct; 40(3):106-12. PubMed ID: 24850270 [Abstract] [Full Text] [Related]
14. The pitch rise paradigm: a new task for real-time endoscopy of non-stationary phonation. Rasp O, Lohscheller J, Doellinger M, Eysholdt U, Hoppe U. Folia Phoniatr Logop; 2006 Oct; 58(3):175-85. PubMed ID: 16636565 [Abstract] [Full Text] [Related]
15. Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds. Zhang Z, Neubauer J, Berry DA. J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2841-9. PubMed ID: 17139742 [Abstract] [Full Text] [Related]
16. [Study on the modeling of the glottic vibration: towards a nonlinear model of type stick and slip]. Garrel R, Giovanni A, Ouaknine MA. Rev Laryngol Otol Rhinol (Bord); 2007 Nov; 128(5):279-88. PubMed ID: 20387373 [Abstract] [Full Text] [Related]
17. Phonation thresholds as a function of laryngeal size in a two-mass model of the vocal folds. Lucero JC, Koenig LL. J Acoust Soc Am; 2005 Nov; 118(5):2798-801. PubMed ID: 16334896 [Abstract] [Full Text] [Related]
18. Estimation of impact stress using an aeroelastic model of voice production. Horácek J, Laukkanen AM, Sidlof P. Logoped Phoniatr Vocol; 2007 Nov; 32(4):185-92. PubMed ID: 17990190 [Abstract] [Full Text] [Related]
19. A methodological study of hemilaryngeal phonation. Jiang JJ, Titze IR. Laryngoscope; 1993 Aug; 103(8):872-82. PubMed ID: 8361290 [Abstract] [Full Text] [Related]
20. The influence of epilarynx area on vocal fold dynamics. Döllinger M, Berry DA, Montequin DW. Otolaryngol Head Neck Surg; 2006 Nov; 135(5):724-729. PubMed ID: 17071302 [Abstract] [Full Text] [Related] Page: [Next] [New Search]