These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


243 related items for PubMed ID: 22779494

  • 1. Scattering of acoustic waves by macroscopically inhomogeneous poroelastic tubes.
    Groby JP, Dazel O, Depollier C, Ogam E, Kelders L.
    J Acoust Soc Am; 2012 Jul; 132(1):477-86. PubMed ID: 22779494
    [Abstract] [Full Text] [Related]

  • 2. Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material.
    Gautier G, Kelders L, Groby JP, Dazel O, De Ryck L, Leclaire P.
    J Acoust Soc Am; 2011 Sep; 130(3):1390-8. PubMed ID: 21895080
    [Abstract] [Full Text] [Related]

  • 3. Reconstruction of material properties profiles in one-dimensional macroscopically inhomogeneous rigid frame porous media in the frequency domain.
    De Ryck L, Lauriks W, Leclaire P, Groby JP, Wirgin A, Depollier C.
    J Acoust Soc Am; 2008 Sep; 124(3):1591-606. PubMed ID: 19045651
    [Abstract] [Full Text] [Related]

  • 4. An alternative Biot's displacement formulation for porous materials.
    Dazel O, Brouard B, Depollier C, Griffiths S.
    J Acoust Soc Am; 2007 Jun; 121(6):3509-16. PubMed ID: 17552703
    [Abstract] [Full Text] [Related]

  • 5. Wave propagation in sandwich panels with a poroelastic core.
    Liu H, Finnveden S, Barbagallo M, Arteaga IL.
    J Acoust Soc Am; 2014 May; 135(5):2683-93. PubMed ID: 24815252
    [Abstract] [Full Text] [Related]

  • 6. In vitro acoustic waves propagation in human and bovine cancellous bone.
    Cardoso L, Teboul F, Sedel L, Oddou C, Meunier A.
    J Bone Miner Res; 2003 Oct; 18(10):1803-12. PubMed ID: 14584891
    [Abstract] [Full Text] [Related]

  • 7. A first-order statistical smoothing approximation for the coherent wave field in random porous random media.
    Müller TM, Gurevich B.
    J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):1796-805. PubMed ID: 15898626
    [Abstract] [Full Text] [Related]

  • 8. Measurements of ultrasound velocity and attenuation in numerical anisotropic porous media compared to Biot's and multiple scattering models.
    Mézière F, Muller M, Bossy E, Derode A.
    Ultrasonics; 2014 Jul; 54(5):1146-54. PubMed ID: 24125533
    [Abstract] [Full Text] [Related]

  • 9. Reflection and transmission coefficients of a single layer in poroelastic media.
    Corredor RM, Santos JE, Gauzellino PM, Carcione JM.
    J Acoust Soc Am; 2014 Jun; 135(6):3151-62. PubMed ID: 24907781
    [Abstract] [Full Text] [Related]

  • 10. Acoustic properties of porous microlattices from effective medium to scattering dominated regimes.
    Krödel S, Palermo A, Daraio C.
    J Acoust Soc Am; 2018 Jul; 144(1):319. PubMed ID: 30075686
    [Abstract] [Full Text] [Related]

  • 11. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.
    Nguyen VH, Naili S.
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):861-76. PubMed ID: 25099567
    [Abstract] [Full Text] [Related]

  • 12. Energy velocity and quality factor of poroelastic waves in isotropic media.
    Gerasik V, Stastna M.
    J Acoust Soc Am; 2011 May; 129(5):2797-805. PubMed ID: 21568384
    [Abstract] [Full Text] [Related]

  • 13. The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation.
    Ogam E, Depollier C, Fellah ZE.
    Rev Sci Instrum; 2010 Sep; 81(9):094902. PubMed ID: 20887001
    [Abstract] [Full Text] [Related]

  • 14. Wave-induced fluid flow in random porous media: attenuation and dispersion of elastic waves.
    Müller TM, Gurevich B.
    J Acoust Soc Am; 2005 May; 117(5):2732-41. PubMed ID: 15957744
    [Abstract] [Full Text] [Related]

  • 15. Dispersion and attenuation due to scattering from heterogeneities of the frame bulk modulus of a poroelastic medium.
    Hefner BT, Jackson DR.
    J Acoust Soc Am; 2010 Jun; 127(6):3372-84. PubMed ID: 20550237
    [Abstract] [Full Text] [Related]

  • 16. Optimal poroelastic layer sequencing for sound transmission loss maximization by topology optimization method.
    Lee JS, Kim EI, Kim YY, Kim JS, Kang YJ.
    J Acoust Soc Am; 2007 Oct; 122(4):2097-106. PubMed ID: 17902847
    [Abstract] [Full Text] [Related]

  • 17. Simulation of ultrasound propagation through bovine cancellous bone using elastic and Biot's finite-difference time-domain methods.
    Hosokawa A.
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1782-9. PubMed ID: 16240836
    [Abstract] [Full Text] [Related]

  • 18. Acoustic behavior of a rigidly backed poroelastic layer with periodic resonant inclusions by a multiple scattering approach.
    Weisser T, Groby JP, Dazel O, Gaultier F, Deckers E, Futatsugi S, Monteiro L.
    J Acoust Soc Am; 2016 Feb; 139(2):617-29. PubMed ID: 26936546
    [Abstract] [Full Text] [Related]

  • 19. Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding.
    Rajabi M, Hasheminejad SM.
    Ultrasonics; 2009 Dec; 49(8):682-95. PubMed ID: 19586650
    [Abstract] [Full Text] [Related]

  • 20. Acoustic wave propagation in effective graded fully anisotropic fluid layers.
    Cavalieri T, Boulvert J, Schwan L, Gabard G, Romero-Garcìa V, Groby JP, Escouflaire M, Mardjono J.
    J Acoust Soc Am; 2019 Nov; 146(5):3400. PubMed ID: 31795708
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.