These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Inhibition of alternative respiration system of Scheffersomyces stipitis and effect on glucose or xylose fermentation. Granados-Arvizu JA, Canizal-García M, Madrigal-Pérez LA, González-Hernández JC, Regalado-González C. FEMS Yeast Res; 2021 Mar 18; 21(2):. PubMed ID: 33493281 [Abstract] [Full Text] [Related]
27. Co-fermentation of cellobiose and xylose by mixed culture of recombinant Saccharomyces cerevisiae and kinetic modeling. Chen Y, Wu Y, Zhu B, Zhang G, Wei N. PLoS One; 2018 Mar 18; 13(6):e0199104. PubMed ID: 29940003 [Abstract] [Full Text] [Related]
28. Repression of xylose-specific enzymes by ethanol in Scheffersomyces (Pichia) stipitis and utility of repitching xylose-grown populations to eliminate diauxic lag. Slininger PJ, Thompson SR, Weber S, Liu ZL, Moon J. Biotechnol Bioeng; 2011 Aug 18; 108(8):1801-15. PubMed ID: 21370229 [Abstract] [Full Text] [Related]
29. Impact of pseudo-continuous fermentation on the ethanol tolerance of Scheffersomyces stipitis. Liang M, Kim MH, He QP, Wang J. J Biosci Bioeng; 2013 Sep 18; 116(3):319-26. PubMed ID: 23628219 [Abstract] [Full Text] [Related]
33. Deletion of D-ribulose-5-phosphate 3-epimerase (RPE1) induces simultaneous utilization of xylose and glucose in xylose-utilizing Saccharomyces cerevisiae. Shen MH, Song H, Li BZ, Yuan YJ. Biotechnol Lett; 2015 May 18; 37(5):1031-6. PubMed ID: 25548118 [Abstract] [Full Text] [Related]
34. Cofermentation of glucose, xylose, and cellobiose by the beetle-associated yeast Spathaspora passalidarum. Long TM, Su YK, Headman J, Higbee A, Willis LB, Jeffries TW. Appl Environ Microbiol; 2012 Aug 18; 78(16):5492-500. PubMed ID: 22636012 [Abstract] [Full Text] [Related]
35. Ethanol fermentation on glucose/xylose mixture by co-cultivation of restricted glucose catabolite repressed mutants of Pichia stipitis with respiratory deficient mutants of Saccharomyces cerevisiae. Kordowska-Wiater M, Targoński Z. Acta Microbiol Pol; 2002 Aug 18; 51(4):345-52. PubMed ID: 12708823 [Abstract] [Full Text] [Related]
36. Process for Assembly and Transformation into Saccharomyces cerevisiae of a Synthetic Yeast Artificial Chromosome Containing a Multigene Cassette to Express Enzymes That Enhance Xylose Utilization Designed for an Automated Platform. Hughes SR, Cox EJ, Bang SS, Pinkelman RJ, López-Núñez JC, Saha BC, Qureshi N, Gibbons WR, Fry MR, Moser BR, Bischoff KM, Liu S, Sterner DE, Butt TR, Riedmuller SB, Jones MA, Riaño-Herrera NM. J Lab Autom; 2015 Dec 18; 20(6):621-35. PubMed ID: 25720598 [Abstract] [Full Text] [Related]
37. Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae. Suga H, Matsuda F, Hasunuma T, Ishii J, Kondo A. Appl Microbiol Biotechnol; 2013 Feb 18; 97(4):1669-78. PubMed ID: 22851014 [Abstract] [Full Text] [Related]
38. Physiological comparisons among Spathaspora passalidarum, Spathaspora arborariae, and Scheffersomyces stipitis reveal the bottlenecks for their use in the production of second-generation ethanol. Campos VJ, Ribeiro LE, Albuini FM, de Castro AG, Fontes PP, da Silveira WB, Rosa CA, Fietto LG. Braz J Microbiol; 2022 Jun 18; 53(2):977-990. PubMed ID: 35174461 [Abstract] [Full Text] [Related]
39. Bioethanol production from mixed sugars by Scheffersomyces stipitis free and immobilized cells, and co-cultures with Saccharomyces cerevisiae. De Bari I, De Canio P, Cuna D, Liuzzi F, Capece A, Romano P. N Biotechnol; 2013 Sep 25; 30(6):591-7. PubMed ID: 23454083 [Abstract] [Full Text] [Related]
40. Highly efficient conversion of xylose to ethanol without glucose repression by newly isolated thermotolerant Spathaspora passalidarum CMUWF1-2. Rodrussamee N, Sattayawat P, Yamada M. BMC Microbiol; 2018 Jul 13; 18(1):73. PubMed ID: 30005621 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]