These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1162 related items for PubMed ID: 22790308

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Droplet-based microfluidics.
    Sharma S, Srisa-Art M, Scott S, Asthana A, Cass A.
    Methods Mol Biol; 2013; 949():207-30. PubMed ID: 23329446
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Basic technologies for droplet microfluidics.
    Zeng S, Liu X, Xie H, Lin B.
    Top Curr Chem; 2011; 304():69-90. PubMed ID: 21598102
    [Abstract] [Full Text] [Related]

  • 7. Micromixing within microfluidic devices.
    Capretto L, Cheng W, Hill M, Zhang X.
    Top Curr Chem; 2011; 304():27-68. PubMed ID: 21526435
    [Abstract] [Full Text] [Related]

  • 8. Analytical detection techniques for droplet microfluidics--a review.
    Zhu Y, Fang Q.
    Anal Chim Acta; 2013 Jul 17; 787():24-35. PubMed ID: 23830418
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion.
    Mazutis L, Baret JC, Griffiths AD.
    Lab Chip; 2009 Sep 21; 9(18):2665-72. PubMed ID: 19704982
    [Abstract] [Full Text] [Related]

  • 11. On-chip electrocoalescence of microdroplets as a function of voltage, frequency and droplet size.
    Zagnoni M, Cooper JM.
    Lab Chip; 2009 Sep 21; 9(18):2652-8. PubMed ID: 19704980
    [Abstract] [Full Text] [Related]

  • 12. A microfluidic droplet generator based on a piezoelectric actuator.
    Bransky A, Korin N, Khoury M, Levenberg S.
    Lab Chip; 2009 Feb 21; 9(4):516-20. PubMed ID: 19190786
    [Abstract] [Full Text] [Related]

  • 13. Droplet microfluidics.
    Teh SY, Lin R, Hung LH, Lee AP.
    Lab Chip; 2008 Feb 21; 8(2):198-220. PubMed ID: 18231657
    [Abstract] [Full Text] [Related]

  • 14. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM.
    Lab Chip; 2006 Mar 21; 6(3):437-46. PubMed ID: 16511628
    [Abstract] [Full Text] [Related]

  • 15. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT, Bottausci F, Rao MP, Parker ER, Mezic I, Macdonald NC.
    Biomed Microdevices; 2008 Aug 21; 10(4):509-17. PubMed ID: 18214682
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Novel combination of hydrophilic/hydrophobic surface for large wettability difference and its application to liquid manipulation.
    Kobayashi T, Shimizu K, Kaizuma Y, Konishi S.
    Lab Chip; 2011 Feb 21; 11(4):639-44. PubMed ID: 21127789
    [Abstract] [Full Text] [Related]

  • 18. "V-junction": a novel structure for high-speed generation of bespoke droplet flows.
    Ding Y, Casadevall i Solvas X, deMello A.
    Analyst; 2015 Jan 21; 140(2):414-21. PubMed ID: 25379571
    [Abstract] [Full Text] [Related]

  • 19. Advanced microfluidic droplet manipulation based on piezoelectric actuation.
    Shemesh J, Bransky A, Khoury M, Levenberg S.
    Biomed Microdevices; 2010 Oct 21; 12(5):907-14. PubMed ID: 20559875
    [Abstract] [Full Text] [Related]

  • 20. Manipulation of microfluidic droplets by electrorheological fluid.
    Zhang M, Gong X, Wen W.
    Electrophoresis; 2009 Sep 21; 30(18):3116-23. PubMed ID: 19722203
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 59.