These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
269 related items for PubMed ID: 22791605
1. Antigenic analysis of highly pathogenic avian influenza virus H5N1 sublineages co-circulating in Egypt. Watanabe Y, Ibrahim MS, Ellakany HF, Kawashita N, Daidoji T, Takagi T, Yasunaga T, Nakaya T, Ikuta K. J Gen Virol; 2012 Oct; 93(Pt 10):2215-2226. PubMed ID: 22791605 [Abstract] [Full Text] [Related]
2. Antigenic analysis of H5N1 highly pathogenic avian influenza viruses circulating in Egypt (2006-2012). Ibrahim M, Eladl AH, Sultan HA, Arafa AS, Abdel Razik AG, Abd El Rahman S, El-Azm KI, Saif YM, Lee CW. Vet Microbiol; 2013 Dec 27; 167(3-4):651-61. PubMed ID: 24139721 [Abstract] [Full Text] [Related]
3. Development of broadly reactive H5N1 vaccine against different Egyptian H5N1 viruses. Ibrahim M, Sultan HA, Razik AG, Kang KI, Arafa AS, Shehata AA, Saif YM, Lee CW. Vaccine; 2015 May 28; 33(23):2670-7. PubMed ID: 25910922 [Abstract] [Full Text] [Related]
4. Comparative efficacy of North American and antigenically matched reverse genetics derived H5N9 DIVA marker vaccines against highly pathogenic Asian H5N1 avian influenza viruses in chickens. Jadhao SJ, Lee CW, Sylte M, Suarez DL. Vaccine; 2009 Oct 19; 27(44):6247-60. PubMed ID: 19686695 [Abstract] [Full Text] [Related]
5. A molecular and antigenic survey of H5N1 highly pathogenic avian influenza virus isolates from smallholder duck farms in Central Java, Indonesia during 2007-2008. Wibawa H, Henning J, Wong F, Selleck P, Junaidi A, Bingham J, Daniels P, Meers J. Virol J; 2011 Sep 07; 8():425. PubMed ID: 21896207 [Abstract] [Full Text] [Related]
6. Genetic versus antigenic differences among highly pathogenic H5N1 avian influenza A viruses: Consequences for vaccine strain selection. Peeters B, Reemers S, Dortmans J, de Vries E, de Jong M, van de Zande S, Rottier PJM, de Haan CAM. Virology; 2017 Mar 07; 503():83-93. PubMed ID: 28135661 [Abstract] [Full Text] [Related]
7. Antigenic diversity and cross-reactivity of avian influenza H5N1 viruses in Egypt between 2006 and 2011. El-Shesheny R, Kayali G, Kandeil A, Cai Z, Barakat AB, Ghanim H, Ali MA. J Gen Virol; 2012 Dec 07; 93(Pt 12):2564-2574. PubMed ID: 22956735 [Abstract] [Full Text] [Related]
8. Antigenic drift in H5N1 avian influenza virus in poultry is driven by mutations in major antigenic sites of the hemagglutinin molecule analogous to those for human influenza virus. Cattoli G, Milani A, Temperton N, Zecchin B, Buratin A, Molesti E, Aly MM, Arafa A, Capua I. J Virol; 2011 Sep 07; 85(17):8718-24. PubMed ID: 21734057 [Abstract] [Full Text] [Related]
9. Antigenic characterization of recent H5N1 highly pathogenic avian influenza viruses circulating in Egyptian poultry. Beato MS, Mancin M, Yang J, Buratin A, Ruffa M, Maniero S, Fusaro A, Terregino C, Wan XF, Capua I. Virology; 2013 Jan 20; 435(2):350-6. PubMed ID: 23123011 [Abstract] [Full Text] [Related]
10. Epidemiological findings of outbreaks of disease caused by highly pathogenic H5N1 avian influenza virus in poultry in Egypt during 2006. Aly MM, Arafa A, Hassan MK. Avian Dis; 2008 Jun 20; 52(2):269-77. PubMed ID: 18646456 [Abstract] [Full Text] [Related]
11. Identification and characterization of a highly pathogenic H5N1 avian influenza A virus during an outbreak in vaccinated chickens in Egypt. Amen O, Vemula SV, Zhao J, Ibrahim R, Hussein A, Hewlett IK, Moussa S, Mittal SK. Virus Res; 2015 Dec 02; 210():337-43. PubMed ID: 26363196 [Abstract] [Full Text] [Related]
12. Glycosylation and an amino acid insertion in the head of hemagglutinin independently affect the antigenic properties of H5N1 avian influenza viruses. Gu C, Zeng X, Song Y, Li Y, Liu L, Kawaoka Y, Zhao D, Chen H. Sci China Life Sci; 2019 Jan 02; 62(1):76-83. PubMed ID: 30515728 [Abstract] [Full Text] [Related]
13. Reverse engineering the antigenic architecture of the haemagglutinin from influenza H5N1 clade 1 and 2.2 viruses with fine epitope mapping using monoclonal antibodies. Rockman S, Camuglia S, Vandenberg K, Ong C, Baker MA, Nation RL, Li J, Velkov T. Mol Immunol; 2013 Apr 02; 53(4):435-42. PubMed ID: 23127859 [Abstract] [Full Text] [Related]
14. Phylodynamics of avian influenza clade 2.2.1 H5N1 viruses in Egypt. Arafa A, El-Masry I, Kholosy S, Hassan MK, Dauphin G, Lubroth J, Makonnen YJ. Virol J; 2016 Mar 22; 13():49. PubMed ID: 27000533 [Abstract] [Full Text] [Related]
15. Evidence for differing evolutionary dynamics of A/H5N1 viruses among countries applying or not applying avian influenza vaccination in poultry. Cattoli G, Fusaro A, Monne I, Coven F, Joannis T, El-Hamid HS, Hussein AA, Cornelius C, Amarin NM, Mancin M, Holmes EC, Capua I. Vaccine; 2011 Nov 21; 29(50):9368-75. PubMed ID: 22001877 [Abstract] [Full Text] [Related]
16. Amino acid substitutions in antigenic region B of hemagglutinin play a critical role in the antigenic drift of subclade 2.3.4.4 highly pathogenic H5NX influenza viruses. Li J, Gu M, Liu K, Gao R, Sun W, Liu D, Jiang K, Zhong L, Wang X, Hu J, Hu S, Liu X, Shi W, Ren H, Peng D, Jiao X, Liu X. Transbound Emerg Dis; 2020 Jan 21; 67(1):263-275. PubMed ID: 31484213 [Abstract] [Full Text] [Related]
17. Acquisition of human-type receptor binding specificity by new H5N1 influenza virus sublineages during their emergence in birds in Egypt. Watanabe Y, Ibrahim MS, Ellakany HF, Kawashita N, Mizuike R, Hiramatsu H, Sriwilaijaroen N, Takagi T, Suzuki Y, Ikuta K. PLoS Pathog; 2011 May 21; 7(5):e1002068. PubMed ID: 21637809 [Abstract] [Full Text] [Related]
18. Antigenic variation of clade 2.1 H5N1 virus is determined by a few amino acid substitutions immediately adjacent to the receptor binding site. Koel BF, van der Vliet S, Burke DF, Bestebroer TM, Bharoto EE, Yasa IW, Herliana I, Laksono BM, Xu K, Skepner E, Russell CA, Rimmelzwaan GF, Perez DR, Osterhaus AD, Smith DJ, Prajitno TY, Fouchier RA. mBio; 2014 Jun 10; 5(3):e01070-14. PubMed ID: 24917596 [Abstract] [Full Text] [Related]
19. Progressive glycosylation of the haemagglutinin of avian influenza H5N1 modulates virus replication, virulence and chicken-to-chicken transmission without significant impact on antigenic drift. Abdelwhab EM, Veits J, Tauscher K, Ziller M, Grund C, Hassan MK, Shaheen M, Harder TC, Teifke J, Stech J, Mettenleiter TC. J Gen Virol; 2016 Dec 10; 97(12):3193-3204. PubMed ID: 27902339 [Abstract] [Full Text] [Related]
20. Pathogenicity of Highly Pathogenic Avian Influenza Virus H5N1 in Naturally Infected Poultry in Egypt. Hagag IT, Mansour SM, Zhang Z, Ali AA, Ismaiel el-BM, Salama AA, Cardona CJ, Collins J, Xing Z. PLoS One; 2015 Dec 10; 10(5):e0120061. PubMed ID: 25962145 [Abstract] [Full Text] [Related] Page: [Next] [New Search]