These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


316 related items for PubMed ID: 22794192

  • 21. Using acoustic cavitation to enhance chemotherapy of DOX liposomes: experiment in vitro and in vivo.
    Zhao YZ, Dai DD, Lu CT, Lv HF, Zhang Y, Li X, Li WF, Wu Y, Jiang L, Li XK, Huang PT, Chen LJ, Lin M.
    Drug Dev Ind Pharm; 2012 Sep; 38(9):1090-8. PubMed ID: 22188116
    [Abstract] [Full Text] [Related]

  • 22. A novel two-step mild hyperthermia for advanced liposomal chemotherapy.
    Li L, ten Hagen TL, Haeri A, Soullié T, Scholten C, Seynhaeve AL, Eggermont AM, Koning GA.
    J Control Release; 2014 Jan 28; 174():202-8. PubMed ID: 24269966
    [Abstract] [Full Text] [Related]

  • 23. Single-walled carbon nanotube-loaded doxorubicin and Gd-DTPA for targeted drug delivery and magnetic resonance imaging.
    Yan C, Chen C, Hou L, Zhang H, Che Y, Qi Y, Zhang X, Cheng J, Zhang Z.
    J Drug Target; 2017 Feb 28; 25(2):163-171. PubMed ID: 27499100
    [Abstract] [Full Text] [Related]

  • 24. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2.
    Ren J, Shen S, Wang D, Xi Z, Guo L, Pang Z, Qian Y, Sun X, Jiang X.
    Biomaterials; 2012 Apr 28; 33(11):3324-33. PubMed ID: 22281423
    [Abstract] [Full Text] [Related]

  • 25. Octreotide-modification enhances the delivery and targeting of doxorubicin-loaded liposomes to somatostatin receptors expressing tumor in vitro and in vivo.
    Sun M, Wang Y, Shen J, Xiao Y, Su Z, Ping Q.
    Nanotechnology; 2010 Nov 26; 21(47):475101. PubMed ID: 21030757
    [Abstract] [Full Text] [Related]

  • 26. Polymeric nanoparticles of cholesterol-modified glycol chitosan for doxorubicin delivery: preparation and in-vitro and in-vivo characterization.
    Yu JM, Li YJ, Qiu LY, Jin Y.
    J Pharm Pharmacol; 2009 Jun 26; 61(6):713-9. PubMed ID: 19505361
    [Abstract] [Full Text] [Related]

  • 27. The cancer targeting potential of D-α-tocopheryl polyethylene glycol 1000 succinate tethered multi walled carbon nanotubes.
    Mehra NK, Verma AK, Mishra PR, Jain NK.
    Biomaterials; 2014 May 26; 35(15):4573-88. PubMed ID: 24612818
    [Abstract] [Full Text] [Related]

  • 28. The delivery of doxorubicin to 3-D multicellular spheroids and tumors in a murine xenograft model using tumor-penetrating triblock polymeric micelles.
    Kim TH, Mount CW, Gombotz WR, Pun SH.
    Biomaterials; 2010 Oct 26; 31(28):7386-97. PubMed ID: 20598741
    [Abstract] [Full Text] [Related]

  • 29. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin.
    Li X, Ding L, Xu Y, Wang Y, Ping Q.
    Int J Pharm; 2009 May 21; 373(1-2):116-23. PubMed ID: 19429296
    [Abstract] [Full Text] [Related]

  • 30. A duplex oligodeoxynucleotide-dendrimer bioconjugate as a novel delivery vehicle for doxorubicin in in vivo cancer therapy.
    Lee IH, Yu MK, Kim IH, Lee JH, Park TG, Jon S.
    J Control Release; 2011 Oct 10; 155(1):88-95. PubMed ID: 20854858
    [Abstract] [Full Text] [Related]

  • 31. Development of biodegradable polymeric implants of RGD-modified PEG-PAMAM-DOX conjugates for long-term intratumoral release.
    Wang K, Zhang X, Zhang L, Qian L, Liu C, Zheng J, Jiang Y.
    Drug Deliv; 2015 May 10; 22(3):389-99. PubMed ID: 24670095
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Delivery of hydrophilic drug doxorubicin hydrochloride-targeted liver using apoAI as carrier.
    Yuan Y, Wang W, Wang B, Zhu H, Zhang B, Feng M.
    J Drug Target; 2013 May 10; 21(4):367-74. PubMed ID: 23600747
    [Abstract] [Full Text] [Related]

  • 34. Doxorubicin-induced co-assembling nanomedicines with temperature-sensitive acidic polymer and their in-situ-forming hydrogels for intratumoral administration.
    Wan J, Geng S, Zhao H, Peng X, Zhou Q, Li H, He M, Zhao Y, Yang X, Xu H.
    J Control Release; 2016 Aug 10; 235():328-336. PubMed ID: 27282415
    [Abstract] [Full Text] [Related]

  • 35. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor.
    Lee ES, Na K, Bae YH.
    J Control Release; 2005 Mar 21; 103(2):405-18. PubMed ID: 15763623
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin.
    Talelli M, Iman M, Varkouhi AK, Rijcken CJ, Schiffelers RM, Etrych T, Ulbrich K, van Nostrum CF, Lammers T, Storm G, Hennink WE.
    Biomaterials; 2010 Oct 21; 31(30):7797-804. PubMed ID: 20673684
    [Abstract] [Full Text] [Related]

  • 38. Estrogen-anchored pH-sensitive liposomes as nanomodule designed for site-specific delivery of doxorubicin in breast cancer therapy.
    Paliwal SR, Paliwal R, Pal HC, Saxena AK, Sharma PR, Gupta PN, Agrawal GP, Vyas SP.
    Mol Pharm; 2012 Jan 01; 9(1):176-86. PubMed ID: 22091702
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Increase of therapeutic activity of doxorubicin by long circulating liposomes in combination with curcumin.
    Wang H, Hu L, Li C, Zhang J, Zhang T.
    Pharmazie; 2011 Nov 01; 66(11):871-4. PubMed ID: 22204133
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 16.