These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
259 related items for PubMed ID: 22805094
1. Overexpression of OsPAP10a, a root-associated acid phosphatase, increased extracellular organic phosphorus utilization in rice. Tian J, Wang C, Zhang Q, He X, Whelan J, Shou H. J Integr Plant Biol; 2012 Sep; 54(9):631-9. PubMed ID: 22805094 [Abstract] [Full Text] [Related]
2. OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus. Lu L, Qiu W, Gao W, Tyerman SD, Shou H, Wang C. Plant Cell Environ; 2016 Oct; 39(10):2247-59. PubMed ID: 27411391 [Abstract] [Full Text] [Related]
3. Improvement in phosphate acquisition and utilization by a secretory purple acid phosphatase (OsPAP21b) in rice. Mehra P, Pandey BK, Giri J. Plant Biotechnol J; 2017 Aug; 15(8):1054-1067. PubMed ID: 28116829 [Abstract] [Full Text] [Related]
4. OsPAP26 Encodes a Major Purple Acid Phosphatase and Regulates Phosphate Remobilization in Rice. Gao W, Lu L, Qiu W, Wang C, Shou H. Plant Cell Physiol; 2017 May 01; 58(5):885-892. PubMed ID: 28371895 [Abstract] [Full Text] [Related]
5. Identification of rice purple acid phosphatases related to phosphate starvation signalling. Zhang Q, Wang C, Tian J, Li K, Shou H. Plant Biol (Stuttg); 2011 Jan 01; 13(1):7-15. PubMed ID: 21143719 [Abstract] [Full Text] [Related]
6. Purple acid phosphatase 10c encodes a major acid phosphatase that regulates plant growth under phosphate-deficient conditions in rice. Deng S, Lu L, Li J, Du Z, Liu T, Li W, Xu F, Shi L, Shou H, Wang C. J Exp Bot; 2020 Jul 06; 71(14):4321-4332. PubMed ID: 32270183 [Abstract] [Full Text] [Related]
7. Integrative Comparison of the Role of the PHOSPHATE RESPONSE1 Subfamily in Phosphate Signaling and Homeostasis in Rice. Guo M, Ruan W, Li C, Huang F, Zeng M, Liu Y, Yu Y, Ding X, Wu Y, Wu Z, Mao C, Yi K, Wu P, Mo X. Plant Physiol; 2015 Aug 06; 168(4):1762-76. PubMed ID: 26082401 [Abstract] [Full Text] [Related]
8. Involvement of OsSPX1 in phosphate homeostasis in rice. Wang C, Ying S, Huang H, Li K, Wu P, Shou H. Plant J; 2009 Mar 06; 57(5):895-904. PubMed ID: 19000161 [Abstract] [Full Text] [Related]
9. GmPAP4, a novel purple acid phosphatase gene isolated from soybean (Glycine max), enhanced extracellular phytate utilization in Arabidopsis thaliana. Kong Y, Li X, Ma J, Li W, Yan G, Zhang C. Plant Cell Rep; 2014 Apr 06; 33(4):655-67. PubMed ID: 24595918 [Abstract] [Full Text] [Related]
10. The purple acid phosphatase GmPAP21 enhances internal phosphorus utilization and possibly plays a role in symbiosis with rhizobia in soybean. Li C, Li C, Zhang H, Liao H, Wang X. Physiol Plant; 2017 Feb 06; 159(2):215-227. PubMed ID: 27762446 [Abstract] [Full Text] [Related]
11. Molecular characterization of OsPAP2: transgenic expression of a purple acid phosphatase up-regulated in phosphate-deprived rice suspension cells. Hur YJ, Jin BR, Nam J, Chung YS, Lee JH, Choi HK, Yun DJ, Yi G, Kim YH, Kim DH. Biotechnol Lett; 2010 Jan 06; 32(1):163-70. PubMed ID: 19838636 [Abstract] [Full Text] [Related]
12. Spatial distribution and expression of intracellular and extracellular acid phosphatases of cluster roots at different developmental stages in white lupin. Tang H, Li X, Zu C, Zhang F, Shen J. J Plant Physiol; 2013 Sep 15; 170(14):1243-50. PubMed ID: 23746995 [Abstract] [Full Text] [Related]
13. Comparative genetic analysis of Arabidopsis purple acid phosphatases AtPAP10, AtPAP12, and AtPAP26 provides new insights into their roles in plant adaptation to phosphate deprivation. Wang L, Lu S, Zhang Y, Li Z, Du X, Liu D. J Integr Plant Biol; 2014 Mar 15; 56(3):299-314. PubMed ID: 24528675 [Abstract] [Full Text] [Related]
14. The cell wall-targeted purple acid phosphatase AtPAP25 is critical for acclimation of Arabidopsis thaliana to nutritional phosphorus deprivation. Del Vecchio HA, Ying S, Park J, Knowles VL, Kanno S, Tanoi K, She YM, Plaxton WC. Plant J; 2014 Nov 15; 80(4):569-81. PubMed ID: 25270985 [Abstract] [Full Text] [Related]
16. Biochemical and molecular characterization of PvPAP3, a novel purple acid phosphatase isolated from common bean enhancing extracellular ATP utilization. Liang C, Tian J, Lam HM, Lim BL, Yan X, Liao H. Plant Physiol; 2010 Feb 15; 152(2):854-65. PubMed ID: 19955264 [Abstract] [Full Text] [Related]
17. Novel phosphatase PvPAP1 from the As-hyperaccumulator Pteris vittata promotes organic P utilization and plant growth: Extracellular exudation and phytate hydrolysis. Chen J, Yang Y, Feng H, Sun D, Hu C, Chen Y, Liu C, Cao Y, Ma LQ. J Hazard Mater; 2024 Aug 05; 474():134867. PubMed ID: 38861900 [Abstract] [Full Text] [Related]
18. Effect of phosphorus levels on the protein profiles of secreted protein and root surface protein of rice. Shinano T, Yoshimura T, Watanabe T, Unno Y, Osaki M, Nanjo Y, Komatsu S. J Proteome Res; 2013 Nov 01; 12(11):4748-56. PubMed ID: 24083427 [Abstract] [Full Text] [Related]
19. The THO/TREX Complex Active in miRNA Biogenesis Negatively Regulates Root-Associated Acid Phosphatase Activity Induced by Phosphate Starvation. Tao S, Zhang Y, Wang X, Xu L, Fang X, Lu ZJ, Liu D. Plant Physiol; 2016 Aug 01; 171(4):2841-53. PubMed ID: 27329222 [Abstract] [Full Text] [Related]
20. A phosphate starvation-induced acid phosphatase from Oryza sativa: phosphate regulation and transgenic expression. Hur YJ, Lee HG, Jeon EJ, Lee YY, Nam MH, Yi G, Eun MY, Nam J, Lee JH, Kim DH. Biotechnol Lett; 2007 May 01; 29(5):829-35. PubMed ID: 17415667 [Abstract] [Full Text] [Related] Page: [Next] [New Search]