These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
220 related items for PubMed ID: 22806499
1. A peptide study of the relationship between the collagen triple-helix and amyloid. Parmar AS, Nunes AM, Baum J, Brodsky B. Biopolymers; 2012 Oct; 97(10):795-806. PubMed ID: 22806499 [Abstract] [Full Text] [Related]
2. Interruptions in the collagen repeating tripeptide pattern can promote supramolecular association. Hwang ES, Thiagarajan G, Parmar AS, Brodsky B. Protein Sci; 2010 May; 19(5):1053-64. PubMed ID: 20340134 [Abstract] [Full Text] [Related]
3. The peptides acetyl-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 and acetyl-(Gly-Pro-3(S)Hyp)10-NH2 do not form a collagen triple helix. Mizuno K, Hayashi T, Peyton DH, Bachinger HP. J Biol Chem; 2004 Jan 02; 279(1):282-7. PubMed ID: 14576161 [Abstract] [Full Text] [Related]
4. Hydroxylation-induced stabilization of the collagen triple helix. Acetyl-(glycyl-4(R)-hydroxyprolyl-4(R)-hydroxyprolyl)(10)-NH(2) forms a highly stable triple helix. Mizuno K, Hayashi T, Peyton DH, Bächinger HP. J Biol Chem; 2004 Sep 03; 279(36):38072-8. PubMed ID: 15231845 [Abstract] [Full Text] [Related]
5. Structure and dynamics of peptide-amphiphiles incorporating triple-helical proteinlike molecular architecture. Yu YC, Roontga V, Daragan VA, Mayo KH, Tirrell M, Fields GB. Biochemistry; 1999 Feb 02; 38(5):1659-68. PubMed ID: 9931034 [Abstract] [Full Text] [Related]
6. The crystal structure of the collagen-like polypeptide (glycyl-4(R)-hydroxyprolyl-4(R)-hydroxyprolyl)9 at 1.55 A resolution shows up-puckering of the proline ring in the Xaa position. Schumacher M, Mizuno K, Bächinger HP. J Biol Chem; 2005 May 27; 280(21):20397-403. PubMed ID: 15784619 [Abstract] [Full Text] [Related]
7. Hydroxylation-induced stabilization of the collagen triple helix. Further characterization of peptides with 4(R)-hydroxyproline in the Xaa position. Mizuno K, Hayashi T, Bächinger HP. J Biol Chem; 2003 Aug 22; 278(34):32373-9. PubMed ID: 12807876 [Abstract] [Full Text] [Related]
8. Synthesis of poly(Pro-Hyp-Gly)(n) by direct poly-condensation of (Pro-Hyp-Gly)(n), where n=1, 5, and 10, and stability of the triple-helical structure. Kishimoto T, Morihara Y, Osanai M, Ogata S, Kamitakahara M, Ohtsuki C, Tanihara M. Biopolymers; 2005 Oct 15; 79(3):163-72. PubMed ID: 16094625 [Abstract] [Full Text] [Related]
9. A (4R)- or a (4S)-fluoroproline residue in position Xaa of the (Xaa-Yaa-Gly) collagen repeat severely affects triple-helix formation. Barth D, Milbradt AG, Renner C, Moroder L. Chembiochem; 2004 Jan 03; 5(1):79-86. PubMed ID: 14695516 [Abstract] [Full Text] [Related]
10. Template-assembled triple-helical peptide molecules: mimicry of collagen by molecular architecture and integrin-specific cell adhesion. Khew ST, Tong YW. Biochemistry; 2008 Jan 15; 47(2):585-96. PubMed ID: 18154308 [Abstract] [Full Text] [Related]
11. Glycosylation/Hydroxylation-induced stabilization of the collagen triple helix. 4-trans-hydroxyproline in the Xaa position can stabilize the triple helix. Bann JG, Bächinger HP. J Biol Chem; 2000 Aug 11; 275(32):24466-9. PubMed ID: 10827193 [Abstract] [Full Text] [Related]
12. The crystal structure of a collagen-like polypeptide with 3(S)-hydroxyproline residues in the Xaa position forms a standard 7/2 collagen triple helix. Schumacher MA, Mizuno K, Bächinger HP. J Biol Chem; 2006 Sep 15; 281(37):27566-74. PubMed ID: 16798737 [Abstract] [Full Text] [Related]
13. Common interruptions in the repeating tripeptide sequence of non-fibrillar collagens: sequence analysis and structural studies on triple-helix peptide models. Thiagarajan G, Li Y, Mohs A, Strafaci C, Popiel M, Baum J, Brodsky B. J Mol Biol; 2008 Feb 22; 376(3):736-48. PubMed ID: 18187152 [Abstract] [Full Text] [Related]
14. Structural consequences of D-amino acids in collagen triple-helical peptides. Shah NK, Brodsky B, Kirkpatrick A, Ramshaw JA. Biopolymers; 1999 Apr 22; 49(4):297-302. PubMed ID: 10079768 [Abstract] [Full Text] [Related]
15. Stabilization of triple-helical structures of collagen peptides containing a Hyp-Thr-Gly, Hyp-Val-Gly, or Hyp-Ser-Gly sequence. Okuyama K, Miyama K, Morimoto T, Masakiyo K, Mizuno K, Bächinger HP. Biopolymers; 2011 Sep 22; 95(9):628-40. PubMed ID: 21442606 [Abstract] [Full Text] [Related]
16. Hydroxyproline Ring Pucker Causes Frustration of Helix Parameters in the Collagen Triple Helix. Chow WY, Bihan D, Forman CJ, Slatter DA, Reid DG, Wales DJ, Farndale RW, Duer MJ. Sci Rep; 2015 Jul 29; 5():12556. PubMed ID: 26220399 [Abstract] [Full Text] [Related]
17. Stability junction at a common mutation site in the collagenous domain of the mannose binding lectin. Mohs A, Li Y, Doss-Pepe E, Baum J, Brodsky B. Biochemistry; 2005 Feb 15; 44(6):1793-9. PubMed ID: 15697204 [Abstract] [Full Text] [Related]
18. Sequence dependence of renucleation after a Gly mutation in model collagen peptides. Hyde TJ, Bryan MA, Brodsky B, Baum J. J Biol Chem; 2006 Dec 01; 281(48):36937-43. PubMed ID: 16998200 [Abstract] [Full Text] [Related]
19. Transformation of the mechanism of triple-helix peptide folding in the absence of a C-terminal nucleation domain and its implications for mutations in collagen disorders. Buevich AV, Silva T, Brodsky B, Baum J. J Biol Chem; 2004 Nov 05; 279(45):46890-5. PubMed ID: 15299012 [Abstract] [Full Text] [Related]
20. Folding and conformational consequences of glycine to alanine replacements at different positions in a collagen model peptide. Bhate M, Wang X, Baum J, Brodsky B. Biochemistry; 2002 May 21; 41(20):6539-47. PubMed ID: 12009919 [Abstract] [Full Text] [Related] Page: [Next] [New Search]