These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


117 related items for PubMed ID: 2281194

  • 1. Coupling of energy to glucose transport by the bacterial phosphotransferase system.
    Erni B.
    Res Microbiol; 1990; 141(3):360-4. PubMed ID: 2281194
    [No Abstract] [Full Text] [Related]

  • 2. Coupling of energy to D-mannitol transport in Escherichia coli.
    Jacobson GR.
    Res Microbiol; 1990; 141(3):365-8. PubMed ID: 2126390
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Regulation of lactose transport by the phosphoenolpyruvate-sugar phosphotransferase system in membrane vesicles of Escherichia coli.
    Dills SS, Schmidt MR, Saier MH.
    J Cell Biochem; 1982; 18(2):239-44. PubMed ID: 7040431
    [Abstract] [Full Text] [Related]

  • 5. Stereochemical course of the reactions catalyzed by the bacterial phosphoenolpyruvate:glucose phosphotransferase system.
    Begley GS, Hansen DE, Jacobson GR, Knowles JR.
    Biochemistry; 1982 Oct 26; 21(22):5552-6. PubMed ID: 6756472
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Flux control of the bacterial phosphoenolpyruvate:glucose phosphotransferase system and the effect of diffusion.
    Francke C, Westerhoff HV, Blom JG, Peletier MA.
    Mol Biol Rep; 2002 Oct 26; 29(1-2):21-6. PubMed ID: 12241059
    [Abstract] [Full Text] [Related]

  • 9. Genetic dissection of specificity determinants in the interaction of HPr with enzymes II of the bacterial phosphoenolpyruvate:sugar phosphotransferase system in Escherichia coli.
    Reichenbach B, Breustedt DA, Stülke J, Rak B, Görke B.
    J Bacteriol; 2007 Jul 26; 189(13):4603-13. PubMed ID: 17449611
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Transcriptional regulation of the bgl operon of Escherichia coli involves phosphotransferase system-mediated phosphorylation of a transcriptional antiterminator.
    Amster-Choder O, Wright A.
    J Cell Biochem; 1993 Jan 26; 51(1):83-90. PubMed ID: 7679391
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Role of the phosphoenolpyruvate-dependent fructose phosphotransferase system in the utilization of mannose by Escherichia coli.
    Kornberg HL, Lambourne LT.
    Proc Biol Sci; 1992 Oct 22; 250(1327):51-5. PubMed ID: 1361062
    [Abstract] [Full Text] [Related]

  • 15. The general PTS component HPr determines the preference for glucose over mannitol.
    Choe M, Park YH, Lee CR, Kim YR, Seok YJ.
    Sci Rep; 2017 Feb 22; 7():43431. PubMed ID: 28225088
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Beta-glucoside permease represses the bgl operon of Escherichia coli by phosphorylation of the antiterminator protein and also interacts with glucose-specific enzyme III, the key element in catabolite control.
    Schnetz K, Rak B.
    Proc Natl Acad Sci U S A; 1990 Jul 22; 87(13):5074-8. PubMed ID: 2195546
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Identification of a site in the phosphocarrier protein, HPr, which influences its interactions with sugar permeases of the bacterial phosphotransferase system: kinetic analyses employing site-specific mutants.
    Koch S, Sutrina SL, Wu LF, Reizer J, Schnetz K, Rak B, Saier MH.
    J Bacteriol; 1996 Feb 22; 178(4):1126-33. PubMed ID: 8576048
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.