These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


361 related items for PubMed ID: 22815259

  • 1. Evaluating the feasibility of utilizing the small molecule phenamil as a novel biofactor for bone regenerative engineering.
    Lo KW, Ulery BD, Kan HM, Ashe KM, Laurencin CT.
    J Tissue Eng Regen Med; 2014 Sep; 8(9):728-36. PubMed ID: 22815259
    [Abstract] [Full Text] [Related]

  • 2. Short-term administration of small molecule phenamil induced a protracted osteogenic effect on osteoblast-like MC3T3-E1 cells.
    Lo KW, Kan HM, Laurencin CT.
    J Tissue Eng Regen Med; 2016 Jun; 10(6):518-26. PubMed ID: 23913855
    [Abstract] [Full Text] [Related]

  • 3. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.
    Jiang T, Khan Y, Nair LS, Abdel-Fattah WI, Laurencin CT.
    J Biomed Mater Res A; 2010 Jun 01; 93(3):1193-208. PubMed ID: 19777575
    [Abstract] [Full Text] [Related]

  • 4. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering.
    Jiang T, Abdel-Fattah WI, Laurencin CT.
    Biomaterials; 2006 Oct 01; 27(28):4894-903. PubMed ID: 16762408
    [Abstract] [Full Text] [Related]

  • 5. Single walled carbon nanotube composites for bone tissue engineering.
    Gupta A, Woods MD, Illingworth KD, Niemeier R, Schafer I, Cady C, Filip P, El-Amin SF.
    J Orthop Res; 2013 Sep 01; 31(9):1374-81. PubMed ID: 23629922
    [Abstract] [Full Text] [Related]

  • 6. Delivery of Phenamil Enhances BMP-2-Induced Osteogenic Differentiation of Adipose-Derived Stem Cells and Bone Formation in Calvarial Defects.
    Fan J, Im CS, Cui ZK, Guo M, Bezouglaia O, Fartash A, Lee JY, Nguyen J, Wu BM, Aghaloo T, Lee M.
    Tissue Eng Part A; 2015 Jul 01; 21(13-14):2053-65. PubMed ID: 25869476
    [Abstract] [Full Text] [Related]

  • 7. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH, El-Amin SF, Scott KD, Laurencin CT.
    J Biomed Mater Res A; 2003 Mar 01; 64(3):465-74. PubMed ID: 12579560
    [Abstract] [Full Text] [Related]

  • 8. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering.
    Igwe JC, Mikael PE, Nukavarapu SP.
    J Tissue Eng Regen Med; 2014 Feb 01; 8(2):131-42. PubMed ID: 22689304
    [Abstract] [Full Text] [Related]

  • 9. Osteogenic activity of nanonized pearl powder/poly (lactide-co-glycolide) composite scaffolds for bone tissue engineering.
    Yang YL, Chang CH, Huang CC, Kao WM, Liu WC, Liu HW.
    Biomed Mater Eng; 2014 Feb 01; 24(1):979-85. PubMed ID: 24211987
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering.
    Sicchieri LG, Crippa GE, de Oliveira PT, Beloti MM, Rosa AL.
    J Tissue Eng Regen Med; 2012 Feb 01; 6(2):155-62. PubMed ID: 21446054
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. In vitro osteogenic differentiation of human amniotic fluid-derived stem cells on a poly(lactide-co-glycolide) (PLGA)-bladder submucosa matrix (BSM) composite scaffold for bone tissue engineering.
    Kim J, Jeong SY, Ju YM, Yoo JJ, Smith TL, Khang G, Lee SJ, Atala A.
    Biomed Mater; 2013 Feb 01; 8(1):014107. PubMed ID: 23353783
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Optimally porous and biomechanically compatible scaffolds for large-area bone regeneration.
    Amini AR, Adams DJ, Laurencin CT, Nukavarapu SP.
    Tissue Eng Part A; 2012 Jul 01; 18(13-14):1376-88. PubMed ID: 22401817
    [Abstract] [Full Text] [Related]

  • 18. Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies.
    Jiang T, Nukavarapu SP, Deng M, Jabbarzadeh E, Kofron MD, Doty SB, Abdel-Fattah WI, Laurencin CT.
    Acta Biomater; 2010 Sep 01; 6(9):3457-70. PubMed ID: 20307694
    [Abstract] [Full Text] [Related]

  • 19. The small molecule phenamil induces osteoblast differentiation and mineralization.
    Park KW, Waki H, Kim WK, Davies BS, Young SG, Parhami F, Tontonoz P.
    Mol Cell Biol; 2009 Jul 01; 29(14):3905-14. PubMed ID: 19433444
    [Abstract] [Full Text] [Related]

  • 20. Mineralized nanofibrous scaffold promotes phenamil-induced osteoblastic differentiation while mitigating adipogenic differentiation.
    Liu Y, Hu J, Sun H.
    J Tissue Eng Regen Med; 2020 Mar 01; 14(3):464-474. PubMed ID: 31840422
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.