These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


116 related items for PubMed ID: 22820614

  • 1. Accumulation of arsenic by aquatic plants in large-scale field conditions: opportunities for phytoremediation and bioindication.
    Favas PJ, Pratas J, Prasad MN.
    Sci Total Environ; 2012 Sep 01; 433():390-7. PubMed ID: 22820614
    [Abstract] [Full Text] [Related]

  • 2. Accumulation of uranium by aquatic plants in field conditions: prospects for phytoremediation.
    Favas PJ, Pratas J, Varun M, D'Souza R, Paul MS.
    Sci Total Environ; 2014 Feb 01; 470-471():993-1002. PubMed ID: 24239820
    [Abstract] [Full Text] [Related]

  • 3. Uranium accumulation by aquatic plants from uranium-contaminated water in Central Portugal.
    Pratas J, Favas PJ, Paulo C, Rodrigues N, Prasad MN.
    Int J Phytoremediation; 2012 Mar 01; 14(3):221-34. PubMed ID: 22567707
    [Abstract] [Full Text] [Related]

  • 4. Aquatic arsenic: phytoremediation using floating macrophytes.
    Rahman MA, Hasegawa H.
    Chemosphere; 2011 Apr 01; 83(5):633-46. PubMed ID: 21435676
    [Abstract] [Full Text] [Related]

  • 5. Opportunities for Phytoremediation and Bioindication of Arsenic Contaminated Water Using a Submerged Aquatic Plant:Vallisneria natans (lour.) Hara.
    Chen G, Liu X, Brookes PC, Xu J.
    Int J Phytoremediation; 2015 Apr 01; 17(1-6):249-55. PubMed ID: 25397983
    [Abstract] [Full Text] [Related]

  • 6. Biogeochemistry of uranium in the soil-plant and water-plant systems in an old uranium mine.
    Favas PJC, Pratas J, Mitra S, Sarkar SK, Venkatachalam P.
    Sci Total Environ; 2016 Oct 15; 568():350-368. PubMed ID: 27314898
    [Abstract] [Full Text] [Related]

  • 7. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E, Esteban E, Peñalosa JM.
    Rev Environ Contam Toxicol; 2012 Oct 15; 215():1-37. PubMed ID: 22057929
    [Abstract] [Full Text] [Related]

  • 8. Uptake and toxicity of arsenic, copper, and silicon in Azolla caroliniana and Lemna minor.
    Rofkar JR, Dwyer DF, Bobak DM.
    Int J Phytoremediation; 2014 Oct 15; 16(2):155-66. PubMed ID: 24912207
    [Abstract] [Full Text] [Related]

  • 9. Evaluation of the potential of Pistia stratiotes L. (water lettuce) for bioindication and phytoremediation of aquatic environments contaminated with arsenic.
    Farnese FS, Oliveira JA, Lima FS, Leão GA, Gusman GS, Silva LC.
    Braz J Biol; 2014 Aug 15; 74(3 Suppl 1):S108-12. PubMed ID: 25627371
    [Abstract] [Full Text] [Related]

  • 10. Arsenic accumulation and translocation in the submerged macrophyte Hydrilla verticillata (L.f.) Royle.
    Xue PY, Yan CZ.
    Chemosphere; 2011 Nov 15; 85(7):1176-81. PubMed ID: 22024098
    [Abstract] [Full Text] [Related]

  • 11. Search for a plant for phytoremediation--what can we learn from field and hydroponic studies?
    Zabłudowska E, Kowalska J, Jedynak L, Wojas S, Skłodowska A, Antosiewicz DM.
    Chemosphere; 2009 Oct 15; 77(3):301-7. PubMed ID: 19733893
    [Abstract] [Full Text] [Related]

  • 12. Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany.
    Mkandawire M, Dudel EG.
    Sci Total Environ; 2005 Jan 05; 336(1-3):81-9. PubMed ID: 15589251
    [Abstract] [Full Text] [Related]

  • 13. Cadmium accumulation in the rootless macrophyte Wolffia globosa and its potential for phytoremediation.
    Xie WY, Huang Q, Li G, Rensing C, Zhu YG.
    Int J Phytoremediation; 2013 Jan 05; 15(4):385-97. PubMed ID: 23488004
    [Abstract] [Full Text] [Related]

  • 14. Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil.
    Jankong P, Visoottiviseth P.
    Chemosphere; 2008 Jul 05; 72(7):1092-7. PubMed ID: 18499218
    [Abstract] [Full Text] [Related]

  • 15. A short-term study to evaluate the uptake and accumulation of arsenic in Asian willow (Salix sp.) from arsenic-contaminated water.
    Chen G, Zou X, Zhou Y, Zhang J, Owens G.
    Environ Sci Pollut Res Int; 2014 Mar 05; 21(5):3275-84. PubMed ID: 24217972
    [Abstract] [Full Text] [Related]

  • 16. Arsenic uptake by Lemna minor in hydroponic system.
    Goswami C, Majumder A, Misra AK, Bandyopadhyay K.
    Int J Phytoremediation; 2014 Mar 05; 16(7-12):1221-7. PubMed ID: 24933913
    [Abstract] [Full Text] [Related]

  • 17. Heavy metal pollution in lentic ecosystem of sub-tropical industrial region and its phytoremediation.
    Rai PK.
    Int J Phytoremediation; 2010 Mar 05; 12(3):226-42. PubMed ID: 20734618
    [Abstract] [Full Text] [Related]

  • 18. Capacity of Lemna gibba L. (duckweed) for uranium and arsenic phytoremediation in mine tailing waters.
    Mkandawire M, Taubert B, Dudel EG.
    Int J Phytoremediation; 2004 Mar 05; 6(4):347-62. PubMed ID: 15696706
    [Abstract] [Full Text] [Related]

  • 19. Arsenic accumulation by the aquatic fern Azolla: comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides.
    Zhang X, Lin AJ, Zhao FJ, Xu GZ, Duan GL, Zhu YG.
    Environ Pollut; 2008 Dec 05; 156(3):1149-55. PubMed ID: 18457908
    [Abstract] [Full Text] [Related]

  • 20. Removal processes for arsenic in constructed wetlands.
    Lizama A K, Fletcher TD, Sun G.
    Chemosphere; 2011 Aug 05; 84(8):1032-43. PubMed ID: 21549410
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.