These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Simply enhancing throughput of free-flow electrophoresis via organic-aqueous environment for purification of weak polarity solute of phenazine-1-carboxylic acid in fermentation of Pseudomonas sp. M18. Yang JH, Shao J, Wang HY, Dong JY, Fan LY, Cao CX, Xu YQ. Electrophoresis; 2012 Sep; 33(18):2925-30. PubMed ID: 22911429 [Abstract] [Full Text] [Related]
4. Controlling of band width, resolution and sample loading by injection system in a simple preparative free-flow electrophoresis with gratis gravity. Shao J, Li S, Zhang W, Fan LY, Cao CX, Sun R, Dong YC. J Chromatogr A; 2010 Apr 02; 1217(14):2182-6. PubMed ID: 20189579 [Abstract] [Full Text] [Related]
5. Quantitative analysis of pyoluteorin in anti-fungal fermentation liquor of Pseudomonas species by capillary zone electrophoresis with UV-vis detector. Wang QL, Zhang XH, Fan LY, Zhang W, Xu YQ, Hu HB, Cao CX. J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Nov 05; 826(1-2):252-6. PubMed ID: 16140044 [Abstract] [Full Text] [Related]
6. [Autoinduction of pyoluteorin and correlation between phenazine-1-carboxylic acid and pyoluteorin in Pseudomonas sp. M18]. Ge YH, Zhao YH, Chen LJ, Miao J, Wen L. Wei Sheng Wu Xue Bao; 2007 Jun 05; 47(3):441-6. PubMed ID: 17672302 [Abstract] [Full Text] [Related]
10. Continuous separation of high molecular weight compounds using a microliter volume free-flow electrophoresis microstructure. Raymond DE, Manz A, Widmer HM. Anal Chem; 1996 Aug 01; 68(15):2515-22. PubMed ID: 21619197 [Abstract] [Full Text] [Related]
11. Phenazine-1-carboxylic acid is negatively regulated and pyoluteorin positively regulated by gacA in Pseudomonas sp. M18. Ge Y, Huang X, Wang S, Zhang X, Xu Y. FEMS Microbiol Lett; 2004 Aug 01; 237(1):41-7. PubMed ID: 15268936 [Abstract] [Full Text] [Related]
12. Purification of low-abundance lysozyme in egg white via free-flow electrophoresis with gel-filtration chromatography. Dong S, Jiang Z, Liu Z, Chen L, Zhang Q, Tian Y, Sohail A, Khan MI, Xiao H, Liu X, Wang Y, Li H, Wu H, Liu W, Cao C. Electrophoresis; 2020 Sep 01; 41(16-17):1529-1538. PubMed ID: 32529672 [Abstract] [Full Text] [Related]
13. A new method of scaling up free flow electrophoresis. Painuly P, Roman MC. Appl Theor Electrophor; 1993 Sep 01; 3(3-4):119-27. PubMed ID: 8390297 [Abstract] [Full Text] [Related]
14. Correlation of capillary zone electrophoresis with continuous free-flow zone electrophoresis: application to the analysis and purification of synthetic growth hormone releasing peptide. Prusík Z, Kasicka V, Mudra P, Stĕpánek J, Smékal O, Hlavácek J. Electrophoresis; 1990 Nov 01; 11(11):932-6. PubMed ID: 2079039 [Abstract] [Full Text] [Related]
19. A method-of-moments formulation for describing hydrodynamic dispersion of analyte streams in free-flow zone electrophoresis. Dutta D. J Chromatogr A; 2014 May 02; 1340():134-8. PubMed ID: 24671038 [Abstract] [Full Text] [Related]
20. Mathematical model and dynamic computer simulation on free flow zone electrophoresis. Zhang J, Yan J, Li S, Pang B, Guo CG, Cao CX, Jin XQ. Analyst; 2013 Oct 07; 138(19):5734-44. PubMed ID: 23923124 [Abstract] [Full Text] [Related] Page: [Next] [New Search]