These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


431 related items for PubMed ID: 22827455

  • 21. Surface plasmon resonance-induced visible light photocatalytic reduction of graphene oxide: using Ag nanoparticles as a plasmonic photocatalyst.
    Wu T, Liu S, Luo Y, Lu W, Wang L, Sun X.
    Nanoscale; 2011 May; 3(5):2142-4. PubMed ID: 21451827
    [Abstract] [Full Text] [Related]

  • 22. Controlled Assembly of Gold Nanostructures on a Solid Substrate via Imidazole Directed Hydrogen Bonding for High Performance Surface Enhance Raman Scattering Sensing of Hypochlorous Acid.
    Sun J, Liu R, Tang J, Zhang Z, Zhou X, Liu J.
    ACS Appl Mater Interfaces; 2015 Aug 05; 7(30):16730-7. PubMed ID: 26167718
    [Abstract] [Full Text] [Related]

  • 23. Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals.
    Carville NC, Manzo M, Damm S, Castiella M, Collins L, Denning D, Weber SA, Gallo K, Rice JH, Rodriguez BJ.
    ACS Nano; 2012 Aug 28; 6(8):7373-80. PubMed ID: 22775541
    [Abstract] [Full Text] [Related]

  • 24. Plasmon resonance changes of gold nanoparticle arrays upon modification.
    Ha DH, Kim S, Yun YJ, Park HJ, Yun WS, Song JH.
    Nanotechnology; 2009 Feb 25; 20(8):085204. PubMed ID: 19417444
    [Abstract] [Full Text] [Related]

  • 25. Large-area 3D chiral plasmonic structures.
    Frank B, Yin X, Schäferling M, Zhao J, Hein SM, Braun PV, Giessen H.
    ACS Nano; 2013 Jul 23; 7(7):6321-9. PubMed ID: 23806025
    [Abstract] [Full Text] [Related]

  • 26. Core-satellite-satellite hierarchical nanostructures: assembly, plasmon coupling, and gap-selective surface-enhanced Raman scattering.
    Trinh HD, Kim S, Park J, Yoon S.
    Nanoscale; 2022 Nov 24; 14(45):17003-17012. PubMed ID: 36354377
    [Abstract] [Full Text] [Related]

  • 27. Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors.
    Mahmoud MA, El-Sayed MA.
    J Am Chem Soc; 2010 Sep 15; 132(36):12704-10. PubMed ID: 20722373
    [Abstract] [Full Text] [Related]

  • 28. Single gold trimers and 3D superstructures exhibit a polarization-independent SERS response.
    Steinigeweg D, Schütz M, Schlücker S.
    Nanoscale; 2013 Jan 07; 5(1):110-3. PubMed ID: 23076725
    [Abstract] [Full Text] [Related]

  • 29. Birth of the localized surface plasmon resonance in monolayer-protected gold nanoclusters.
    Malola S, Lehtovaara L, Enkovaara J, Häkkinen H.
    ACS Nano; 2013 Nov 26; 7(11):10263-70. PubMed ID: 24107127
    [Abstract] [Full Text] [Related]

  • 30. Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement.
    Tseng ML, Huang YW, Hsiao MK, Huang HW, Chen HM, Chen YL, Chu CH, Chu NN, He YJ, Chang CM, Lin WC, Huang DW, Chiang HP, Liu RS, Sun G, Tsai DP.
    ACS Nano; 2012 Jun 26; 6(6):5190-7. PubMed ID: 22551343
    [Abstract] [Full Text] [Related]

  • 31. Shape-dependent plasmon-resonant gold nanoparticles.
    Orendorff CJ, Sau TK, Murphy CJ.
    Small; 2006 May 26; 2(5):636-9. PubMed ID: 17193100
    [No Abstract] [Full Text] [Related]

  • 32. Sensitive and selective localized surface plasmon resonance light-scattering sensor for Ag+ with unmodified gold nanoparticles.
    Wu C, Xiong C, Wang L, Lan C, Ling L.
    Analyst; 2010 Oct 26; 135(10):2682-7. PubMed ID: 20820488
    [Abstract] [Full Text] [Related]

  • 33. Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range.
    Cha H, Yoon JH, Yoon S.
    ACS Nano; 2014 Aug 26; 8(8):8554-63. PubMed ID: 25089844
    [Abstract] [Full Text] [Related]

  • 34. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles.
    Guler U, Turan R.
    Opt Express; 2010 Aug 02; 18(16):17322-38. PubMed ID: 20721120
    [Abstract] [Full Text] [Related]

  • 35. Raman enhancement on a broadband meta-surface.
    Ayas S, Güner H, Türker B, Ekiz OÖ, Dirisaglik F, Okyay AK, Dâna A.
    ACS Nano; 2012 Aug 28; 6(8):6852-61. PubMed ID: 22845672
    [Abstract] [Full Text] [Related]

  • 36. Surface assembly and plasmonic properties in strongly coupled segmented gold nanorods.
    Gupta MK, König T, Near R, Nepal D, Drummy LF, Biswas S, Naik S, Vaia RA, El-Sayed MA, Tsukruk VV.
    Small; 2013 Sep 09; 9(17):2979-90. PubMed ID: 23495078
    [Abstract] [Full Text] [Related]

  • 37. Plasmonic Nanoassemblies: Tentacles Beat Satellites for Boosting Broadband NIR Plasmon Coupling Providing a Novel Candidate for SERS and Photothermal Therapy.
    Dey P, Tabish TA, Mosca S, Palombo F, Matousek P, Stone N.
    Small; 2020 Mar 09; 16(10):e1906780. PubMed ID: 31997560
    [Abstract] [Full Text] [Related]

  • 38. Deep UV nano-microstructuring of substrates for surface plasmon resonance imaging.
    Dhawan A, Duval A, Nakkach M, Barbillon G, Moreau J, Canva M, Vo-Dinh T.
    Nanotechnology; 2011 Apr 22; 22(16):165301. PubMed ID: 21393822
    [Abstract] [Full Text] [Related]

  • 39. Direct writing of metal nanostructures: lithographic tools for nanoplasmonics research.
    Leggett GJ.
    ACS Nano; 2011 Mar 22; 5(3):1575-9. PubMed ID: 21417494
    [Abstract] [Full Text] [Related]

  • 40. Block-copolymer-based plasmonic nanostructures.
    Mistark PA, Park S, Yalcin SE, Lee DH, Yavuzcetin O, Tuominen MT, Russell TP, Achermann M.
    ACS Nano; 2009 Dec 22; 3(12):3987-92. PubMed ID: 19947582
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 22.