These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
110 related items for PubMed ID: 22834639
1. Enhanced electron extraction from template-free 3D nanoparticulate transparent conducting oxide (TCO) electrodes for dye-sensitized solar cells. Yang Z, Gao S, Li T, Liu FQ, Ren Y, Xu T. ACS Appl Mater Interfaces; 2012 Aug; 4(8):4419-27. PubMed ID: 22834639 [Abstract] [Full Text] [Related]
2. Laser welding of nanoparticulate TiO2 and transparent conducting oxide electrodes for highly efficient dye-sensitized solar cell. Kim J, Kim J, Lee M. Nanotechnology; 2010 Aug 27; 21(34):345203. PubMed ID: 20671364 [Abstract] [Full Text] [Related]
3. General strategy for fabricating transparent TiO2 nanotube arrays for dye-sensitized photoelectrodes: illumination geometry and transport properties. Kim JY, Noh JH, Zhu K, Halverson AF, Neale NR, Park S, Hong KS, Frank AJ. ACS Nano; 2011 Apr 26; 5(4):2647-56. PubMed ID: 21395234 [Abstract] [Full Text] [Related]
4. Micrometer-sized fluorine doped tin oxide as fast electron collector for enhanced dye-sensitized solar cells. Cui XR, Wang YF, Li Z, Zhou L, Gao F, Zeng JH. ACS Appl Mater Interfaces; 2014 Oct 08; 6(19):16593-600. PubMed ID: 25226086 [Abstract] [Full Text] [Related]
6. An interfacial and bulk charge transport model for dye-sensitized solar cells based on photoanodes consisting of core-shell nanowire arrays. Hill JJ, Banks N, Haller K, Orazem ME, Ziegler KJ. J Am Chem Soc; 2011 Nov 23; 133(46):18663-72. PubMed ID: 21899330 [Abstract] [Full Text] [Related]
7. Fast transporting ZnO-TiO2 coaxial photoanodes for dye-sensitized solar cells based on ALD-modified SiO2 aerogel frameworks. Williams VO, Jeong NC, Prasittichai C, Farha OK, Pellin MJ, Hupp JT. ACS Nano; 2012 Jul 24; 6(7):6185-96. PubMed ID: 22721529 [Abstract] [Full Text] [Related]
8. Robust and aligned carbon nanotube/titania core/shell films for flexible TCO-free photoelectrodes. Di J, Yong Z, Yao Z, Liu X, Shen X, Sun B, Zhao Z, He H, Li Q. Small; 2013 Jan 14; 9(1):148-55. PubMed ID: 22965581 [Abstract] [Full Text] [Related]
9. Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes. Wang XF, Tamiaki H, Wang L, Tamai N, Kitao O, Zhou H, Sasaki S. Langmuir; 2010 May 04; 26(9):6320-7. PubMed ID: 20380394 [Abstract] [Full Text] [Related]
11. Visible light water splitting using dye-sensitized oxide semiconductors. Youngblood WJ, Lee SH, Maeda K, Mallouk TE. Acc Chem Res; 2009 Dec 21; 42(12):1966-73. PubMed ID: 19905000 [Abstract] [Full Text] [Related]
12. Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. Liu B, Aydil ES. J Am Chem Soc; 2009 Mar 25; 131(11):3985-90. PubMed ID: 19245201 [Abstract] [Full Text] [Related]
13. Three dimensional indium-tin-oxide nanorod array for charge collection in dye-sensitized solar cells. Lee B, Guo P, Li SQ, Buchholz DB, Chang RP. ACS Appl Mater Interfaces; 2014 Oct 22; 6(20):17713-22. PubMed ID: 25147966 [Abstract] [Full Text] [Related]
14. Electron transport in dye-sensitized solar cells based on ZnO nanotubes: evidence for highly efficient charge collection and exceptionally rapid dynamics. Martinson AB, Góes MS, Fabregat-Santiago F, Bisquert J, Pellin MJ, Hupp JT. J Phys Chem A; 2009 Apr 23; 113(16):4015-21. PubMed ID: 19371110 [Abstract] [Full Text] [Related]
15. Photoelectrochemical quantification of electron transport resistance of TiO(2) photoanodes for dye-sensitized solar cells. Yu H, Zhang S, Zhao H, Zhang H. Phys Chem Chem Phys; 2010 Jul 07; 12(25):6625-31. PubMed ID: 20424787 [Abstract] [Full Text] [Related]
16. Three-dimensional photonic crystal fluorinated tin oxide (FTO) electrodes: synthesis and optical and electrical properties. Yang Z, Gao S, Li W, Vlasko-Vlasov V, Welp U, Kwok WK, Xu T. ACS Appl Mater Interfaces; 2011 Apr 07; 3(4):1101-8. PubMed ID: 21395238 [Abstract] [Full Text] [Related]
17. Electrospray preparation of hierarchically-structured mesoporous TiO₂ spheres for use in highly efficient dye-sensitized solar cells. Hwang D, Lee H, Jang SY, Jo SM, Kim D, Seo Y, Kim DY. ACS Appl Mater Interfaces; 2011 Jul 07; 3(7):2719-25. PubMed ID: 21644555 [Abstract] [Full Text] [Related]
18. Kinetics of electron recombination of dye-sensitized solar cells based on TiO2 nanorod arrays sensitized with different dyes. Wang H, Liu M, Zhang M, Wang P, Miura H, Cheng Y, Bell J. Phys Chem Chem Phys; 2011 Oct 14; 13(38):17359-66. PubMed ID: 21881630 [Abstract] [Full Text] [Related]
19. TiO₂ photoanode structure with gradations in V concentration for dye-sensitized solar cells. Liu Z, Li Y, Liu C, Ya J, E L, Zhao W, Zhao D, An L. ACS Appl Mater Interfaces; 2011 May 14; 3(5):1721-5. PubMed ID: 21491933 [Abstract] [Full Text] [Related]
20. Random nanowires of nickel doped TiO2 with high surface area and electron mobility for high efficiency dye-sensitized solar cells. Archana PS, Naveen Kumar E, Vijila C, Ramakrishna S, Yusoff MM, Jose R. Dalton Trans; 2013 Jan 28; 42(4):1024-32. PubMed ID: 23108373 [Abstract] [Full Text] [Related] Page: [Next] [New Search]