These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
310 related items for PubMed ID: 22843704
1. β-Adrenergic receptor stimulation causes cardiac hypertrophy via a Gβγ/Erk-dependent pathway. Vidal M, Wieland T, Lohse MJ, Lorenz K. Cardiovasc Res; 2012 Nov 01; 96(2):255-64. PubMed ID: 22843704 [Abstract] [Full Text] [Related]
2. Interference with ERK(Thr188) phosphorylation impairs pathological but not physiological cardiac hypertrophy. Ruppert C, Deiss K, Herrmann S, Vidal M, Oezkur M, Gorski A, Weidemann F, Lohse MJ, Lorenz K. Proc Natl Acad Sci U S A; 2013 Apr 30; 110(18):7440-5. PubMed ID: 23589880 [Abstract] [Full Text] [Related]
3. Role of heterotrimeric G protein and calcium in cardiomyocyte hypertrophy induced by IGF-1. Carrasco L, Cea P, Rocco P, Peña-Oyarzún D, Rivera-Mejias P, Sotomayor-Flores C, Quiroga C, Criollo A, Ibarra C, Chiong M, Lavandero S. J Cell Biochem; 2014 Apr 30; 115(4):712-20. PubMed ID: 24243530 [Abstract] [Full Text] [Related]
5. A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. Lorenz K, Schmitt JP, Schmitteckert EM, Lohse MJ. Nat Med; 2009 Jan 30; 15(1):75-83. PubMed ID: 19060905 [Abstract] [Full Text] [Related]
6. Mechanism of activation of ERK and H-K-ATPase by isoproterenol in rat cortical collecting duct. Laroche-Joubert N, Marsy S, Luriau S, Imbert-Teboul M, Doucet A. Am J Physiol Renal Physiol; 2003 May 30; 284(5):F948-54. PubMed ID: 12676735 [Abstract] [Full Text] [Related]
7. RGS2 inhibits beta-adrenergic receptor-induced cardiomyocyte hypertrophy. Nunn C, Zou MX, Sobiesiak AJ, Roy AA, Kirshenbaum LA, Chidiac P. Cell Signal; 2010 Aug 30; 22(8):1231-9. PubMed ID: 20362664 [Abstract] [Full Text] [Related]
8. The impact of blunted beta-adrenergic responsiveness on growth regulatory pathways in hypertension. Gros R, Ding Q, Chorazyczewski J, Andrews J, Pickering JG, Hegele RA, Feldman RD. Mol Pharmacol; 2006 Jan 30; 69(1):317-27. PubMed ID: 16223959 [Abstract] [Full Text] [Related]
9. Interplay between the E2F pathway and β-adrenergic signaling in the pathological hypertrophic response of myocardium. Major JL, Salih M, Tuana BS. J Mol Cell Cardiol; 2015 Jul 30; 84():179-90. PubMed ID: 25944088 [Abstract] [Full Text] [Related]
10. Signaling pathways of isoproterenol-induced ERK1/2 phosphorylation in primary cultures of astrocytes are concentration-dependent. Du T, Li B, Li H, Li M, Hertz L, Peng L. J Neurochem; 2010 Nov 30; 115(4):1007-23. PubMed ID: 20831657 [Abstract] [Full Text] [Related]
11. Small heat-shock protein Hsp20 attenuates beta-agonist-mediated cardiac remodeling through apoptosis signal-regulating kinase 1. Fan GC, Yuan Q, Song G, Wang Y, Chen G, Qian J, Zhou X, Lee YJ, Ashraf M, Kranias EG. Circ Res; 2006 Nov 24; 99(11):1233-42. PubMed ID: 17068291 [Abstract] [Full Text] [Related]
12. Ontogeny of regulatory mechanisms for beta-adrenoceptor control of rat cardiac adenylyl cyclase: targeting of G-proteins and the cyclase catalytic subunit. Zeiders JL, Seidler FJ, Slotkin TA. J Mol Cell Cardiol; 1997 Feb 24; 29(2):603-15. PubMed ID: 9140819 [Abstract] [Full Text] [Related]
13. Both Gs and Gi proteins are critically involved in isoproterenol-induced cardiomyocyte hypertrophy. Zou Y, Komuro I, Yamazaki T, Kudoh S, Uozumi H, Kadowaki T, Yazaki Y. J Biol Chem; 1999 Apr 02; 274(14):9760-70. PubMed ID: 10092665 [Abstract] [Full Text] [Related]
14. Mechanisms of impaired beta-adrenergic receptor signaling in G(alphaq)-mediated cardiac hypertrophy and ventricular dysfunction. Dorn GW, Tepe NM, Wu G, Yatani A, Liggett SB. Mol Pharmacol; 2000 Feb 02; 57(2):278-87. PubMed ID: 10648637 [Abstract] [Full Text] [Related]
15. Insulin resistance affects the cytoprotective effect of insulin in cardiomyocytes through an impairment of MAPK phosphatase-1 expression. Morisco C, Marrone C, Trimarco V, Crispo S, Monti MG, Sadoshima J, Trimarco B. Cardiovasc Res; 2007 Dec 01; 76(3):453-64. PubMed ID: 17698050 [Abstract] [Full Text] [Related]
16. Dominant role of GABAB2 and Gbetagamma for GABAB receptor-mediated-ERK1/2/CREB pathway in cerebellar neurons. Tu H, Rondard P, Xu C, Bertaso F, Cao F, Zhang X, Pin JP, Liu J. Cell Signal; 2007 Sep 01; 19(9):1996-2002. PubMed ID: 17582742 [Abstract] [Full Text] [Related]
17. Akt mediates the cross-talk between beta-adrenergic and insulin receptors in neonatal cardiomyocytes. Morisco C, Condorelli G, Trimarco V, Bellis A, Marrone C, Condorelli G, Sadoshima J, Trimarco B. Circ Res; 2005 Feb 04; 96(2):180-8. PubMed ID: 15591229 [Abstract] [Full Text] [Related]
18. Inducible cAMP early repressor (ICER) is a negative-feedback regulator of cardiac hypertrophy and an important mediator of cardiac myocyte apoptosis in response to beta-adrenergic receptor stimulation. Tomita H, Nazmy M, Kajimoto K, Yehia G, Molina CA, Sadoshima J. Circ Res; 2003 Jul 11; 93(1):12-22. PubMed ID: 12791704 [Abstract] [Full Text] [Related]
19. Anti-beta1-adrenergic receptor autoantibodies are potent stimulators of the ERK1/2 pathway in cardiac cells. Tutor AS, Penela P, Mayor F. Cardiovasc Res; 2007 Oct 01; 76(1):51-60. PubMed ID: 17628514 [Abstract] [Full Text] [Related]
20. G beta gamma counteracts G alpha(q) signaling upon alpha(1)-adrenergic receptor stimulation. Nishida M, Takagahara S, Maruyama Y, Sugimoto Y, Nagao T, Kurose H. Biochem Biophys Res Commun; 2002 Mar 08; 291(4):995-1000. PubMed ID: 11866464 [Abstract] [Full Text] [Related] Page: [Next] [New Search]