These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


210 related items for PubMed ID: 22844520

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants.
    Schumacher J, de Larrinoa IF, Tudzynski B.
    Eukaryot Cell; 2008 Apr; 7(4):584-601. PubMed ID: 18263765
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Cyclophilin BcCyp2 Regulates Infection-Related Development to Facilitate Virulence of the Gray Mold Fungus Botrytis cinerea.
    Sun J, Sun CH, Chang HW, Yang S, Liu Y, Zhang MZ, Hou J, Zhang H, Li GH, Qin QM.
    Int J Mol Sci; 2021 Feb 08; 22(4):. PubMed ID: 33567582
    [Abstract] [Full Text] [Related]

  • 7. The effect of Ca2+-calcineurin signaling pathway on the antifungal activity of Pd-D-V against Botrytis cinerea.
    Yu Y, Li X, Hou Y, Wei M, Qian Y, Zhou Y, Yin M, Jiang Y, Song P.
    Pestic Biochem Physiol; 2024 Aug 08; 203():106007. PubMed ID: 39084802
    [Abstract] [Full Text] [Related]

  • 8. Involvement of the cysteine protease BcAtg4 in development and virulence of Botrytis cinerea.
    Liu N, Ren W, Li F, Chen C, Ma Z.
    Curr Genet; 2019 Feb 08; 65(1):293-300. PubMed ID: 30167777
    [Abstract] [Full Text] [Related]

  • 9. Cch1 and Mid1 are functionally required for vegetative growth under low-calcium conditions in the phytopathogenic ascomycete Botrytis cinerea.
    Harren K, Tudzynski B.
    Eukaryot Cell; 2013 May 08; 12(5):712-24. PubMed ID: 23475703
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. The Two Cryptochrome/Photolyase Family Proteins Fulfill Distinct Roles in DNA Photorepair and Regulation of Conidiation in the Gray Mold Fungus Botrytis cinerea.
    Cohrs KC, Schumacher J.
    Appl Environ Microbiol; 2017 Sep 01; 83(17):. PubMed ID: 28667107
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Different signalling pathways involving a Galpha protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia.
    Doehlemann G, Berndt P, Hahn M.
    Mol Microbiol; 2006 Feb 01; 59(3):821-35. PubMed ID: 16420354
    [Abstract] [Full Text] [Related]

  • 15. Comparative quantitative proteomics of osmotic signal transduction mutants in Botrytis cinerea explain mutant phenotypes and highlight interaction with cAMP and Ca2+ signalling pathways.
    Kilani J, Davanture M, Simon A, Zivy M, Fillinger S.
    J Proteomics; 2020 Feb 10; 212():103580. PubMed ID: 31733416
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Cyclophilin A and calcineurin functions investigated by gene inactivation, cyclosporin A inhibition and cDNA arrays approaches in the phytopathogenic fungus Botrytis cinerea.
    Viaud M, Brunet-Simon A, Brygoo Y, Pradier JM, Levis C.
    Mol Microbiol; 2003 Dec 10; 50(5):1451-65. PubMed ID: 14651630
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Identification of Botrytis cinerea genes up-regulated during infection and controlled by the Galpha subunit BCG1 using suppression subtractive hybridization (SSH).
    Schulze Gronover C, Schorn C, Tudzynski B.
    Mol Plant Microbe Interact; 2004 May 10; 17(5):537-46. PubMed ID: 15141958
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.