These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


241 related items for PubMed ID: 22852626

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. The phase diagram of ice Ih, II, and III: a quasi-harmonic study.
    Ramírez R, Neuerburg N, Herrero CP.
    J Chem Phys; 2012 Oct 07; 137(13):134503. PubMed ID: 23039603
    [Abstract] [Full Text] [Related]

  • 3. The phase diagram of ice: a quasi-harmonic study based on a flexible water model.
    Ramírez R, Neuerburg N, Herrero CP.
    J Chem Phys; 2013 Aug 28; 139(8):084503. PubMed ID: 24007014
    [Abstract] [Full Text] [Related]

  • 4. Isotope effects in ice Ih: a path-integral simulation.
    Herrero CP, Ramírez R.
    J Chem Phys; 2011 Mar 07; 134(9):094510. PubMed ID: 21384988
    [Abstract] [Full Text] [Related]

  • 5. High-density amorphous ice: a path-integral simulation.
    Herrero CP, Ramírez R.
    J Chem Phys; 2012 Sep 14; 137(10):104505. PubMed ID: 22979872
    [Abstract] [Full Text] [Related]

  • 6. Quantum path integral simulation of isotope effects in the melting temperature of ice Ih.
    Ramírez R, Herrero CP.
    J Chem Phys; 2010 Oct 14; 133(14):144511. PubMed ID: 20950021
    [Abstract] [Full Text] [Related]

  • 7. Ice and water droplets on graphite: a comparison of quantum and classical simulations.
    Ramírez R, Singh JK, Müller-Plathe F, Böhm MC.
    J Chem Phys; 2014 Nov 28; 141(20):204701. PubMed ID: 25429951
    [Abstract] [Full Text] [Related]

  • 8. Classical and quantum gibbs free energies and phase behavior of water using simulation and cell theory.
    Klefas-Stennett M, Henchman RH.
    J Phys Chem B; 2008 Aug 14; 112(32):9769-76. PubMed ID: 18637683
    [Abstract] [Full Text] [Related]

  • 9. Quantum effects in ice Ih.
    Hernández de la Peña L, Gulam Razul MS, Kusalik PG.
    J Chem Phys; 2005 Oct 08; 123(14):144506. PubMed ID: 16238406
    [Abstract] [Full Text] [Related]

  • 10. Calculation of heat capacities of light and heavy water by path-integral molecular dynamics.
    Shiga M, Shinoda W.
    J Chem Phys; 2005 Oct 01; 123(13):134502. PubMed ID: 16223309
    [Abstract] [Full Text] [Related]

  • 11. Competing quantum effects in the dynamics of a flexible water model.
    Habershon S, Markland TE, Manolopoulos DE.
    J Chem Phys; 2009 Jul 14; 131(2):024501. PubMed ID: 19603998
    [Abstract] [Full Text] [Related]

  • 12. Properties of ices at 0 K: a test of water models.
    Aragones JL, Noya EG, Abascal JL, Vega C.
    J Chem Phys; 2007 Oct 21; 127(15):154518. PubMed ID: 17949184
    [Abstract] [Full Text] [Related]

  • 13. Thermodynamic properties of a quasi-harmonic model for ferroelectric transitions.
    Mkam Tchouobiap SE, Mashiyama H.
    J Phys Condens Matter; 2011 Mar 30; 23(12):125902. PubMed ID: 21386368
    [Abstract] [Full Text] [Related]

  • 14. An application of flexible constraints in Monte Carlo simulations of the isobaric--isothermal ensemble of liquid water and ice Ih with the polarizable and flexible mobile charge densities in harmonic oscillators model.
    Saint-Martin H, Hess B, Berendsen HJ.
    J Chem Phys; 2004 Jun 15; 120(23):11133-43. PubMed ID: 15268143
    [Abstract] [Full Text] [Related]

  • 15. On how differently the quasi-harmonic approximation works for two isostructural crystals: thermal properties of periclase and lime.
    Erba A, Shahrokhi M, Moradian R, Dovesi R.
    J Chem Phys; 2015 Jan 28; 142(4):044114. PubMed ID: 25637976
    [Abstract] [Full Text] [Related]

  • 16. Can gas hydrate structures be described using classical simulations?
    Conde MM, Vega C, McBride C, Noya EG, Ramírez R, Sesé LM.
    J Chem Phys; 2010 Mar 21; 132(11):114503. PubMed ID: 20331301
    [Abstract] [Full Text] [Related]

  • 17. Predicting the melting temperature of ice-Ih with only electronic structure information as input.
    Pinnick ER, Erramilli S, Wang F.
    J Chem Phys; 2012 Jul 07; 137(1):014510. PubMed ID: 22779668
    [Abstract] [Full Text] [Related]

  • 18. Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations.
    Weiss VC, Rullich M, Köhler C, Frauenheim T.
    J Chem Phys; 2011 Jul 21; 135(3):034701. PubMed ID: 21787017
    [Abstract] [Full Text] [Related]

  • 19. Quantum effects in liquid water and ice: model dependence.
    Hernández de la Peña L, Kusalik PG.
    J Chem Phys; 2006 Aug 07; 125(5):054512. PubMed ID: 16942231
    [Abstract] [Full Text] [Related]

  • 20. The Importance of Nuclear Quantum Effects on the Thermodynamic and Structural Properties of Low-Density Amorphous Ice: A Comparison with Hexagonal Ice.
    Eltareb A, Lopez GE, Giovambattista N.
    J Phys Chem B; 2023 May 25; 127(20):4633-4645. PubMed ID: 37178124
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.