These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


117 related items for PubMed ID: 2285777

  • 1. Thermodynamics of local linkage effects. Contracted partition functions and the analysis of site-specific energetics.
    Di Cera E.
    Biophys Chem; 1990 Aug 31; 37(1-3):147-64. PubMed ID: 2285777
    [Abstract] [Full Text] [Related]

  • 2. Linkage thermodynamics of individual site binding phenomena.
    Di Cera E.
    J Theor Biol; 1989 Feb 22; 136(4):467-74. PubMed ID: 2811401
    [Abstract] [Full Text] [Related]

  • 3. Canonical formulation of linkage thermodynamics.
    Di Cera E, Gill SJ, Wyman J.
    Proc Natl Acad Sci U S A; 1988 Jul 22; 85(14):5077-81. PubMed ID: 3393532
    [Abstract] [Full Text] [Related]

  • 4. Binding capacity: cooperativity and buffering in biopolymers.
    Di Cera E, Gill SJ, Wyman J.
    Proc Natl Acad Sci U S A; 1988 Jan 22; 85(2):449-52. PubMed ID: 3422436
    [Abstract] [Full Text] [Related]

  • 5. A group of thermodynamic potentials applicable to ligand binding by a polyfunctional macromolecule.
    Wyman J.
    Proc Natl Acad Sci U S A; 1975 Apr 22; 72(4):1464-8. PubMed ID: 1055419
    [Abstract] [Full Text] [Related]

  • 6. Thermodynamics and kinetics of co-operative protein-nucleic acid binding. I. General aspects of analysis of data.
    Schwarz G, Watanabe F.
    J Mol Biol; 1983 Jan 25; 163(3):467-84. PubMed ID: 6834432
    [Abstract] [Full Text] [Related]

  • 7. A simple model for solvation in mixed solvents. Applications to the stabilization and destabilization of macromolecular structures.
    Schellman JA.
    Biophys Chem; 1990 Aug 31; 37(1-3):121-40. PubMed ID: 2285775
    [Abstract] [Full Text] [Related]

  • 8. Carbon monoxide and oxygen binding to human hemoglobin F0.
    Di Cera E, Doyle ML, Morgan MS, De Cristofaro R, Landolfi R, Bizzi B, Castagnola M, Gill SJ.
    Biochemistry; 1989 Mar 21; 28(6):2631-8. PubMed ID: 2471551
    [Abstract] [Full Text] [Related]

  • 9. From the Kinetic Theory of Gases to the Kinetics of Rate Processes: On the Verge of the Thermodynamic and Kinetic Limits.
    Carvalho-Silva VH, Coutinho ND, Aquilanti V.
    Molecules; 2020 Apr 30; 25(9):. PubMed ID: 32365840
    [Abstract] [Full Text] [Related]

  • 10. Thermodynamics of information transfer between subunits in oligomeric enzymes and kinetic cooperativity. 1. Thermodynamics of subunit interactions, partition functions and enzyme reaction rate.
    Ricard J, Giudici-Orticoni MT, Buc J.
    Eur J Biochem; 1990 Dec 12; 194(2):463-73. PubMed ID: 2269278
    [Abstract] [Full Text] [Related]

  • 11. Thermodynamics of the binding of ligands by macromolecules.
    Alberty RA.
    Biophys Chem; 1996 Nov 29; 62(1-3):141-59. PubMed ID: 8962475
    [Abstract] [Full Text] [Related]

  • 12. Equilibrium fluctuation relations for voltage coupling in membrane proteins.
    Kim I, Warshel A.
    Biochim Biophys Acta; 2015 Nov 29; 1848(11 Pt A):2985-97. PubMed ID: 26290960
    [Abstract] [Full Text] [Related]

  • 13. Calculation of site affinity constants and cooperativity coefficients for binding of ligands and/or protons to macromolecules. I. Generation of partition functions and mass balance equations.
    Fisicaro E, Braibanti A, Lamb JD, Oscarson JL.
    Biophys Chem; 1990 May 29; 36(1):1-14. PubMed ID: 2207268
    [Abstract] [Full Text] [Related]

  • 14. Calculation of thermodynamic properties of species from binding of a ligand by a macromolecule.
    Alberty RA.
    Biophys Chem; 2003 Aug 01; 105(1):45-58. PubMed ID: 12932578
    [Abstract] [Full Text] [Related]

  • 15. Free energy coupling within macromolecules. The chemical work of ligand binding at the individual sites in co-operative systems.
    Ackers GK, Shea MA, Smith FR.
    J Mol Biol; 1983 Oct 15; 170(1):223-42. PubMed ID: 6631962
    [Abstract] [Full Text] [Related]

  • 16. Thermodynamics of ion binding by proteins. Phenomenological linkage relations for binding of electrolyte and interpretation by double layer theory.
    Fraaije JG, Lyklema J.
    Biophys Chem; 1991 Jan 15; 39(1):31-44. PubMed ID: 2012832
    [Abstract] [Full Text] [Related]

  • 17. The energetics of ligand-linked subunit assembly in hemoglobin require a third allosteric structure.
    Ackers GK.
    Biophys Chem; 1990 Aug 31; 37(1-3):371-82. PubMed ID: 2285798
    [Abstract] [Full Text] [Related]

  • 18. Investigations into the thermodynamics of polypeptide interaction with nonpolar ligands.
    Hearn MT, Zhao G.
    Anal Chem; 1999 Nov 01; 71(21):4874-85. PubMed ID: 10565277
    [Abstract] [Full Text] [Related]

  • 19. Measuring the differential stoichiometry and energetics of ligand binding to macromolecules by single-molecule force spectroscopy: an extended theory.
    Jacobson DR, Saleh OA.
    J Phys Chem B; 2015 Feb 05; 119(5):1930-8. PubMed ID: 25621932
    [Abstract] [Full Text] [Related]

  • 20. An analytic model for kinetics of hemoglobin reacting with ligand.
    Phillipson PE.
    Biophys Chem; 1990 Aug 31; 37(1-3):91-5. PubMed ID: 2285806
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.