These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


125 related items for PubMed ID: 2285793

  • 1. Differential scanning calorimetric studies of E. coli aspartate transcarbamylase. III. The denaturational thermodynamics of the holoenzyme with single-site mutations in the catalytic chain.
    Burz DS, Allewell NM, Ghosaini L, Hu CQ, Sturtevant JM.
    Biophys Chem; 1990 Aug 31; 37(1-3):31-41. PubMed ID: 2285793
    [Abstract] [Full Text] [Related]

  • 2. Effects of assembly and mutations outside the active site on the functional pH dependence of Escherichia coli aspartate transcarbamylase.
    Yuan X, LiCata VJ, Allewell NM.
    J Biol Chem; 1996 Jan 19; 271(3):1285-94. PubMed ID: 8576114
    [Abstract] [Full Text] [Related]

  • 3. Kinetic consequences of site-specific mutation of Glu-239----Gln in E. coli aspartate transcarbamylase: comparison with catalytic subunits and Phe-240 mutant enzyme.
    Hsuanyu Y, Wedler FC, Middleton SA, Kantrowitz ER.
    Biochim Biophys Acta; 1989 Mar 16; 995(1):54-8. PubMed ID: 2647154
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Weakening of the interface between adjacent catalytic chains promotes domain closure in Escherichia coli aspartate transcarbamoylase.
    Baker DP, Fetler L, Keiser RT, Vachette P, Kantrowitz ER.
    Protein Sci; 1995 Feb 16; 4(2):258-67. PubMed ID: 7757014
    [Abstract] [Full Text] [Related]

  • 6. Three of the six possible intersubunit stabilizing interactions involving Glu-239 are sufficient for restoration of the homotropic and heterotropic properties of Escherichia coli aspartate transcarbamoylase.
    Sakash JB, Chan RS, Tsuruta H, Kantrowitz ER.
    J Biol Chem; 2000 Jan 14; 275(2):752-8. PubMed ID: 10625604
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Differential scanning calorimetric study of the thermal denaturation of aspartate transcarbamoylase of Escherichia coli.
    Edge V, Allewell NM, Sturtevant JM.
    Biochemistry; 1988 Oct 18; 27(21):8081-7. PubMed ID: 3069128
    [Abstract] [Full Text] [Related]

  • 12. Negative complementation in aspartate transcarbamylase. Analysis of hybrid enzyme molecules containing different arrangements of polypeptide chains from wild-type and inactive mutant catalytic subunits.
    Eisenstein E, Han MS, Woo TS, Ritchey JM, Gibbons I, Yang YR, Schachman HK.
    J Biol Chem; 1992 Nov 05; 267(31):22148-55. PubMed ID: 1429567
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Changes in stability and allosteric properties of aspartate transcarbamoylase resulting from amino acid substitutions in the zinc-binding domain of the regulatory chains.
    Eisenstein E, Markby DW, Schachman HK.
    Proc Natl Acad Sci U S A; 1989 May 05; 86(9):3094-8. PubMed ID: 2566165
    [Abstract] [Full Text] [Related]

  • 15. The allosteric activator ATP induces a substrate-dependent alteration of the quaternary structure of a mutant aspartate transcarbamoylase impaired in active site closure.
    Baker DP, Fetler L, Vachette P, Kantrowitz ER.
    Protein Sci; 1996 Nov 05; 5(11):2276-86. PubMed ID: 8931146
    [Abstract] [Full Text] [Related]

  • 16. Glutamic acid 86 is important for positioning the 80's loop and arginine 54 at the active site of Escherichia coli aspartate transcarbamoylase and for the structural stabilization of the C1-C2 interface.
    Baker DP, Stebbins JW, DeSena E, Kantrowitz ER.
    J Biol Chem; 1994 Oct 07; 269(40):24608-14. PubMed ID: 7929132
    [Abstract] [Full Text] [Related]

  • 17. The regulatory subunit of Escherichia coli aspartate carbamoyltransferase may influence homotropic cooperativity and heterotropic interactions by a direct interaction with the loop containing residues 230-245 of the catalytic chain.
    Newton CJ, Kantrowitz ER.
    Proc Natl Acad Sci U S A; 1990 Mar 07; 87(6):2309-13. PubMed ID: 2179954
    [Abstract] [Full Text] [Related]

  • 18. Primary structure of murine major histocompatibility complex alloantigens: amino acid sequence of the amino-terminal one hundred and seventy-three residues of the H-2Kb glycoprotein.
    Uehara H, Ewenstein BM, Martinko JM, Nathenson SG, Coligan JE, Kindt TJ.
    Biochemistry; 1980 Jan 22; 19(2):306-15. PubMed ID: 6986168
    [Abstract] [Full Text] [Related]

  • 19. Arginine 54 in the active site of Escherichia coli aspartate transcarbamoylase is critical for catalysis: a site-specific mutagenesis, NMR, and X-ray crystallographic study.
    Stebbins JW, Robertson DE, Roberts MF, Stevens RC, Lipscomb WN, Kantrowitz ER.
    Protein Sci; 1992 Nov 22; 1(11):1435-46. PubMed ID: 1303763
    [Abstract] [Full Text] [Related]

  • 20. Function of arginine-234 and aspartic acid-271 in domain closure, cooperativity, and catalysis in Escherichia coli aspartate transcarbamylase.
    Middleton SA, Kantrowitz ER.
    Biochemistry; 1988 Nov 15; 27(23):8653-60. PubMed ID: 3146350
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.