These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
153 related items for PubMed ID: 22859405
1. Role of endothelin-1 in renal regulation of acid-base equilibrium in acidotic humans. Pallini A, Hulter HN, Muser J, Krapf R. Am J Physiol Renal Physiol; 2012 Oct; 303(7):F991-9. PubMed ID: 22859405 [Abstract] [Full Text] [Related]
2. On the mechanism of growth hormone-induced stimulation of renal acidification in humans: effect of dietary NaCl. Jehle S, Hulter HN, Krapf R. Clin Sci (Lond); 2000 Jul; 99(1):47-56. PubMed ID: 10887057 [Abstract] [Full Text] [Related]
3. Dietary sodium chloride intake independently predicts the degree of hyperchloremic metabolic acidosis in healthy humans consuming a net acid-producing diet. Frassetto LA, Morris RC, Sebastian A. Am J Physiol Renal Physiol; 2007 Aug; 293(2):F521-5. PubMed ID: 17522265 [Abstract] [Full Text] [Related]
4. Acid retention during kidney failure induces endothelin and aldosterone production which lead to progressive GFR decline, a situation ameliorated by alkali diet. Wesson DE, Simoni J. Kidney Int; 2010 Dec; 78(11):1128-35. PubMed ID: 20861823 [Abstract] [Full Text] [Related]
5. Acid-base and endocrine effects of aldosterone and angiotensin II inhibition in metabolic acidosis in human patients. Henger A, Tutt P, Riesen WF, Hulter HN, Krapf R. J Lab Clin Med; 2000 Nov; 136(5):379-89. PubMed ID: 11079465 [Abstract] [Full Text] [Related]
6. Effect of growth hormone on renal and systemic acid-base homeostasis in humans. Sicuro A, Mahlbacher K, Hulter HN, Krapf R. Am J Physiol; 1998 Apr; 274(4):F650-7. PubMed ID: 9575887 [Abstract] [Full Text] [Related]
7. A high-salt diet stimulates thick ascending limb eNOS expression by raising medullary osmolality and increasing release of endothelin-1. Herrera M, Garvin JL. Am J Physiol Renal Physiol; 2005 Jan; 288(1):F58-64. PubMed ID: 15353403 [Abstract] [Full Text] [Related]
8. Effect of extracellular fluid volume depletion on renal regulation of acid-base and potassium equilibrium during prolonged mineral acid administration. Hulter HN, Toto RD, Sebastian A, Mackie S, Cooke CR, Wilson TE, Melby JC. J Lab Clin Med; 1984 Jun; 103(6):854-68. PubMed ID: 6726056 [Abstract] [Full Text] [Related]
9. Increased endothelin activity mediates augmented distal nephron acidification induced by dietary protein. Khanna A, Simoni J, Hacker C, Duran MJ, Wesson DE. Trans Am Clin Climatol Assoc; 2005 Jun; 116():239-56; discussion 257-8. PubMed ID: 16555618 [Abstract] [Full Text] [Related]
11. Renal regulation of acid-base equilibrium during chronic administration of mineral acid. De Sousa RC, Harrington JT, Ricanati ES, Shelkrot JW, Schwartz WB. J Clin Invest; 1974 Feb; 53(2):465-76. PubMed ID: 11344560 [Abstract] [Full Text] [Related]
12. Effect of potassium on renal acidification and acid-base homeostasis. Tannen RL. Semin Nephrol; 1987 Sep; 7(3):263-73. PubMed ID: 2825318 [Abstract] [Full Text] [Related]
13. Glucocorticoid activity and metabolism with NaCl-induced low-grade metabolic acidosis and oral alkalization: results of two randomized controlled trials. Buehlmeier J, Remer T, Frings-Meuthen P, Maser-Gluth C, Heer M. Endocrine; 2016 Apr; 52(1):139-47. PubMed ID: 26349936 [Abstract] [Full Text] [Related]
14. Blockade of endothelin receptors attenuates end-organ damage in homozygous hypertensive ren-2 transgenic rats. Dvorák P, Kramer HJ, Bäcker A, Malý J, Kopkan L, Vanecková I, Vernerová Z, Opocenský M, Tesar V, Bader M, Ganten D, Janda J, Cervenka L. Kidney Blood Press Res; 2004 Apr; 27(4):248-58. PubMed ID: 15286437 [Abstract] [Full Text] [Related]
15. Low NaCl intake elevates renal medullary endothelin-1 and endothelin A (ETA) receptor mRNA but not the sensitivity of renal Na+ excretion to ETA receptor blockade in rats. Klinger F, Grimm R, Steinbach A, Tanneberger M, Kunert-Keil C, Rettig R, Grisk O. Acta Physiol (Oxf); 2008 Mar; 192(3):429-42. PubMed ID: 17892519 [Abstract] [Full Text] [Related]
16. Chronic metabolic acidosis upregulates rat kidney Na-HCO cotransporters NBCn1 and NBC3 but not NBC1. Kwon TH, Fulton C, Wang W, Kurtz I, Frøkiaer J, Aalkjaer C, Nielsen S. Am J Physiol Renal Physiol; 2002 Feb; 282(2):F341-51. PubMed ID: 11788449 [Abstract] [Full Text] [Related]
17. Diet, evolution and aging--the pathophysiologic effects of the post-agricultural inversion of the potassium-to-sodium and base-to-chloride ratios in the human diet. Frassetto L, Morris RC, Sellmeyer DE, Todd K, Sebastian A. Eur J Nutr; 2001 Oct; 40(5):200-13. PubMed ID: 11842945 [Abstract] [Full Text] [Related]
18. Regulation of the Cl-/HCO3- exchanger AE2 in rat thick ascending limb of Henle's loop in response to changes in acid-base and sodium balance. Quentin F, Eladari D, Frische S, Cambillau M, Nielsen S, Alper SL, Paillard M, Chambrey R. J Am Soc Nephrol; 2004 Dec; 15(12):2988-97. PubMed ID: 15579501 [Abstract] [Full Text] [Related]
19. Increasing sodium intake from a previous low or high intake affects water, electrolyte and acid-base balance differently. Heer M, Frings-Meuthen P, Titze J, Boschmann M, Frisch S, Baecker N, Beck L. Br J Nutr; 2009 May; 101(9):1286-94. PubMed ID: 19173770 [Abstract] [Full Text] [Related]
20. Pendrin in the mouse kidney is primarily regulated by Cl- excretion but also by systemic metabolic acidosis. Hafner P, Grimaldi R, Capuano P, Capasso G, Wagner CA. Am J Physiol Cell Physiol; 2008 Dec; 295(6):C1658-67. PubMed ID: 18971389 [Abstract] [Full Text] [Related] Page: [Next] [New Search]