These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
355 related items for PubMed ID: 22870638
21. Rapid Quantitation of Adulterants in Premium Marine Oils by Raman and IR Spectroscopy: A Data Fusion Approach. Ahmmed F, Killeen DP, Gordon KC, Fraser-Miller SJ. Molecules; 2022 Jul 15; 27(14):. PubMed ID: 35889406 [Abstract] [Full Text] [Related]
22. Detecting and quantifying sunflower oil adulteration in extra virgin olive oils from the eastern mediterranean by visible and near-infrared spectroscopy. Downey G, McIntyre P, Davies AN. J Agric Food Chem; 2002 Sep 25; 50(20):5520-5. PubMed ID: 12236673 [Abstract] [Full Text] [Related]
23. Quantitative analysis of blended corn-olive oil based on Raman spectroscopy and one-dimensional convolutional neural network. Wu X, Gao S, Niu Y, Zhao Z, Ma R, Xu B, Liu H, Zhang Y. Food Chem; 2022 Aug 15; 385():132655. PubMed ID: 35279503 [Abstract] [Full Text] [Related]
24. Application of invasive weed optimization and least square support vector machine for prediction of beef adulteration with spoiled beef based on visible near-infrared (Vis-NIR) hyperspectral imaging. Zhao HT, Feng YZ, Chen W, Jia GF. Meat Sci; 2019 May 15; 151():75-81. PubMed ID: 30716565 [Abstract] [Full Text] [Related]
25. Rapid detection of copper chlorophyll in vegetable oils based on surface-enhanced Raman spectroscopy. Lian WN, Shiue J, Wang HH, Hong WC, Shih PH, Hsu CK, Huang CY, Hsing CR, Wei CM, Wang JK, Wang YL. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015 May 15; 32(5):627-34. PubMed ID: 25822695 [Abstract] [Full Text] [Related]
27. Electrospray ionization mass spectrometry and partial least squares discriminant analysis applied to the quality control of olive oil. Alves JO, Botelho BG, Sena MM, Augusti R. J Mass Spectrom; 2013 Oct 03; 48(10):1109-15. PubMed ID: 24130014 [Abstract] [Full Text] [Related]
28. Determination of oil and water content in olive pomace using near infrared and Raman spectrometry. A comparative study. Muik B, Lendl B, Molina-Díaz A, Pérez-Villarejo L, Ayora-Cañada MJ. Anal Bioanal Chem; 2004 May 03; 379(1):35-41. PubMed ID: 14968284 [Abstract] [Full Text] [Related]
29. Stepwise strategy based on 1H-NMR fingerprinting in combination with chemometrics to determine the content of vegetable oils in olive oil mixtures. Alonso-Salces RM, Berrueta LÁ, Quintanilla-Casas B, Vichi S, Tres A, Collado MI, Asensio-Regalado C, Viacava GE, Poliero AA, Valli E, Bendini A, Gallina Toschi T, Martínez-Rivas JM, Moreda W, Gallo B. Food Chem; 2022 Jan 01; 366():130588. PubMed ID: 34314930 [Abstract] [Full Text] [Related]
31. Application of Raman spectroscopy in the rapid detection of waste cooking oil. Jin H, Li H, Yin Z, Zhu Y, Lu A, Zhao D, Li C. Food Chem; 2021 Nov 15; 362():130191. PubMed ID: 34082292 [Abstract] [Full Text] [Related]
32. Blends of olive oil and seeds oils: characterisation and olive oil quantification using fatty acids composition and chemometric tools. Part II. Monfreda M, Gobbi L, Grippa A. Food Chem; 2014 Feb 15; 145():584-92. PubMed ID: 24128518 [Abstract] [Full Text] [Related]
33. [Authentication and adulteration analysis of sesame oil by FTIR spectroscopy]. Ding QZ, Liu LL, Wu YW, Li BN, Ouyang J. Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct 15; 34(10):2690-5. PubMed ID: 25739209 [Abstract] [Full Text] [Related]
34. Validation of Fluorescence Spectroscopy to Detect Adulteration of Edible Oil in Extra Virgin Olive Oil (EVOO) by Applying Chemometrics. Ali H, Saleem M, Anser MR, Khan S, Ullah R, Bilal M. Appl Spectrosc; 2018 Sep 15; 72(9):1371-1379. PubMed ID: 29712442 [Abstract] [Full Text] [Related]
35. Detection of adulterants in olive oil by headspace-mass spectrometry. Marcos Lorenzo I, Pérez Pavón JL, Fernández Laespada ME, García Pinto C, Moreno Cordero B. J Chromatogr A; 2002 Feb 01; 945(1-2):221-30. PubMed ID: 11862986 [Abstract] [Full Text] [Related]
36. Use of temperature dependent Raman spectra to improve accuracy for analysis of complex oil-based samples: lube base oils and adulterated olive oils. Kim M, Lee S, Chang K, Chung H, Jung YM. Anal Chim Acta; 2012 Oct 20; 748():58-66. PubMed ID: 23021808 [Abstract] [Full Text] [Related]
37. [Study on modeling method of total viable count of fresh pork meat based on hyperspectral imaging system]. Wang W, Peng YK, Zhang XL. Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Feb 20; 30(2):411-5. PubMed ID: 20384135 [Abstract] [Full Text] [Related]
38. Raman spectroscopy combined with multiple one-dimensional deep learning models for simultaneous quantification of multiple components in blended olive oil. Wu X, Zhang X, Du Z, Yang D, Xu B, Ma R, Luo H, Liu H, Zhang Y. Food Chem; 2024 Jan 15; 431():137109. PubMed ID: 37582325 [Abstract] [Full Text] [Related]
39. Effect of thermal oxidation on detection of adulteration at low concentrations in extra virgin olive oil: Study based on laser-induced fluorescence spectroscopy combined with KPCA-LDA. Li Y, Chen S, Chen H, Guo P, Li T, Xu Q. Food Chem; 2020 Mar 30; 309():125669. PubMed ID: 31683148 [Abstract] [Full Text] [Related]
40. Food adulteration analysis without laboratory prepared or determined reference food adulterant values. Kalivas JH, Georgiou CA, Moira M, Tsafaras I, Petrakis EA, Mousdis GA. Food Chem; 2014 Apr 01; 148():289-93. PubMed ID: 24262559 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]