These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


355 related items for PubMed ID: 22870638

  • 41.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 42.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 43. A unique quantitative method of acid value of edible oils and studying the impact of heating on edible oils by UV-Vis spectrometry.
    Zhang W, Li N, Feng Y, Su S, Li T, Liang B.
    Food Chem; 2015 Oct 15; 185():326-32. PubMed ID: 25952875
    [Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 46.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 47. Synchronous front-face fluorescence spectroscopy for authentication of the adulteration of edible vegetable oil with refined used frying oil.
    Tan J, Li R, Jiang ZT, Tang SH, Wang Y, Shi M, Xiao YQ, Jia B, Lu TX, Wang H.
    Food Chem; 2017 Feb 15; 217():274-280. PubMed ID: 27664635
    [Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49. Novel qPCR systems for olive (Olea europaea L.) authentication in oils and food.
    Ramos-Gómez S, Busto MD, Albillos SM, Ortega N.
    Food Chem; 2016 Mar 01; 194():447-54. PubMed ID: 26471578
    [Abstract] [Full Text] [Related]

  • 50. [Model Optimization of Ternary System Adulteration Detection in Camellia Oil Based on Visible/Near Infrared Spectroscopy].
    Mo XX, Zhou Y, Sun T, Wu YQ, Liu MH.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Dec 01; 36(12):3881-4. PubMed ID: 30235404
    [Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53. Detection of the presence of hazelnut oil in olive oil by FT-raman and FT-MIR spectroscopy.
    Baeten V, Fernández Pierna JA, Dardenne P, Meurens M, García-González DL, Aparicio-Ruiz R.
    J Agric Food Chem; 2005 Aug 10; 53(16):6201-6. PubMed ID: 16076094
    [Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56. Authentication of pure and adulterated edible oils using non-destructive ultrasound.
    Jiménez A, Rufo M, Paniagua JM, González-Mohino A, Olegario LS.
    Food Chem; 2023 Dec 15; 429():136820. PubMed ID: 37531872
    [Abstract] [Full Text] [Related]

  • 57. Updating a synchronous fluorescence spectroscopic virgin olive oil adulteration calibration to a new geographical region.
    Kunz MR, Ottaway J, Kalivas JH, Georgiou CA, Mousdis GA.
    J Agric Food Chem; 2011 Feb 23; 59(4):1051-7. PubMed ID: 21250694
    [Abstract] [Full Text] [Related]

  • 58. Synchronous fluorescence spectroscopy for quantitative determination of virgin olive oil adulteration with sunflower oil.
    Poulli KI, Mousdis GA, Georgiou CA.
    Anal Bioanal Chem; 2006 Nov 23; 386(5):1571-5. PubMed ID: 16953317
    [Abstract] [Full Text] [Related]

  • 59. Rapid Authentication and Detection of Olive Oil Adulteration Using Laser-Induced Breakdown Spectroscopy.
    Nanou E, Pliatsika N, Couris S.
    Molecules; 2023 Dec 05; 28(24):. PubMed ID: 38138450
    [Abstract] [Full Text] [Related]

  • 60. Rapid quantitative assessment of the adulteration of virgin olive oils with hazelnut oils using Raman spectroscopy and chemometrics.
    López-Díez EC, Bianchi G, Goodacre R.
    J Agric Food Chem; 2003 Oct 08; 51(21):6145-50. PubMed ID: 14518936
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 18.