These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


508 related items for PubMed ID: 22871380

  • 1. Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion.
    Jiang B, Yang K, Zhao Q, Wu Q, Liang Z, Zhang L, Peng X, Zhang Y.
    J Chromatogr A; 2012 Sep 07; 1254():8-13. PubMed ID: 22871380
    [Abstract] [Full Text] [Related]

  • 2. A hydrophilic immobilized trypsin reactor with N-vinyl-2-pyrrolidinone modified polymer microparticles as matrix for highly efficient protein digestion with low peptide residue.
    Jiang H, Yuan H, Liang Y, Xia S, Zhao Q, Wu Q, Zhang L, Liang Z, Zhang Y.
    J Chromatogr A; 2012 Jul 13; 1246():111-6. PubMed ID: 22446077
    [Abstract] [Full Text] [Related]

  • 3. Hydrophilic polydopamine-coated magnetic graphene nanocomposites for highly efficient tryptic immobilization.
    Shi C, Deng C, Li Y, Zhang X, Yang P.
    Proteomics; 2014 Jun 13; 14(12):1457-63. PubMed ID: 24723515
    [Abstract] [Full Text] [Related]

  • 4. Novel microwave-assisted digestion by trypsin-immobilized magnetic nanoparticles for proteomic analysis.
    Lin S, Yun D, Qi D, Deng C, Li Y, Zhang X.
    J Proteome Res; 2008 Mar 13; 7(3):1297-307. PubMed ID: 18257514
    [Abstract] [Full Text] [Related]

  • 5. Hydrophilic monolith based immobilized enzyme reactors in capillary and on microchip for high-throughput proteomic analysis.
    Liang Y, Tao D, Ma J, Sun L, Liang Z, Zhang L, Zhang Y.
    J Chromatogr A; 2011 May 20; 1218(20):2898-905. PubMed ID: 21450299
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Efficient proteolysis using a regenerable metal-ion chelate immobilized enzyme reactor supported on organic-inorganic hybrid silica monolith.
    Ma J, Hou C, Liang Y, Wang T, Liang Z, Zhang L, Zhang Y.
    Proteomics; 2011 Mar 20; 11(5):991-5. PubMed ID: 21280225
    [Abstract] [Full Text] [Related]

  • 8. Immobilization of trypsin on graphene oxide for microwave-assisted on-plate proteolysis combined with MALDI-MS analysis.
    Xu G, Chen X, Hu J, Yang P, Yang D, Wei L.
    Analyst; 2012 Jun 21; 137(12):2757-61. PubMed ID: 22575850
    [Abstract] [Full Text] [Related]

  • 9. Immobilization of trypsin via graphene oxide-silica composite for efficient microchip proteolysis.
    Bao H, Zhang L, Chen G.
    J Chromatogr A; 2013 Oct 04; 1310():74-81. PubMed ID: 23998335
    [Abstract] [Full Text] [Related]

  • 10. Fast and efficient proteolysis by microwave-assisted protein digestion using trypsin-immobilized magnetic silica microspheres.
    Lin S, Yao G, Qi D, Li Y, Deng C, Yang P, Zhang X.
    Anal Chem; 2008 May 15; 80(10):3655-65. PubMed ID: 18407620
    [Abstract] [Full Text] [Related]

  • 11. Rapid and efficient proteolysis through laser-assisted immobilized enzyme reactors.
    Zhang P, Gao M, Zhu S, Lei J, Zhang X.
    J Chromatogr A; 2011 Nov 25; 1218(47):8567-71. PubMed ID: 22024345
    [Abstract] [Full Text] [Related]

  • 12. Preparation of high efficiency and low carry-over immobilized enzymatic reactor with methacrylic acid-silica hybrid monolith as matrix for on-line protein digestion.
    Yuan H, Zhang L, Zhang Y.
    J Chromatogr A; 2014 Dec 05; 1371():48-57. PubMed ID: 25456586
    [Abstract] [Full Text] [Related]

  • 13. Development of microwave-assisted protein digestion based on trypsin-immobilized magnetic microspheres for highly efficient proteolysis followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis.
    Lin S, Lin Z, Yao G, Deng C, Yang P, Zhang X.
    Rapid Commun Mass Spectrom; 2007 Dec 05; 21(23):3910-8. PubMed ID: 17990248
    [Abstract] [Full Text] [Related]

  • 14. [Effects of the size of magnetic particles of immobilized enzyme reactors on the digestion performance].
    Zhang J, Zhou L, Tian F, Zhang Y, Qian X.
    Se Pu; 2013 Feb 05; 31(2):102-10. PubMed ID: 23697172
    [Abstract] [Full Text] [Related]

  • 15. Dendrimer-grafted graphene oxide nanosheets as novel support for trypsin immobilization to achieve fast on-plate digestion of proteins.
    Jiang B, Yang K, Zhang L, Liang Z, Peng X, Zhang Y.
    Talanta; 2014 May 05; 122():278-84. PubMed ID: 24720996
    [Abstract] [Full Text] [Related]

  • 16. Immobilized trypsin on epoxy organic monoliths with modulated hydrophilicity: novel bioreactors useful for protein analysis by liquid chromatography coupled to tandem mass spectrometry.
    Calleri E, Temporini C, Gasparrini F, Simone P, Villani C, Ciogli A, Massolini G.
    J Chromatogr A; 2011 Dec 09; 1218(49):8937-45. PubMed ID: 21679957
    [Abstract] [Full Text] [Related]

  • 17. A novel organic-inorganic hybrid monolith for trypsin immobilization.
    Wu S, Ma J, Yang K, Liu J, Liang Z, Zhang L, Zhang Y.
    Sci China Life Sci; 2011 Jan 09; 54(1):54-9. PubMed ID: 21253871
    [Abstract] [Full Text] [Related]

  • 18. Ultrafast microwave-assisted in-tip digestion of proteins.
    Hahn HW, Rainer M, Ringer T, Huck CW, Bonn GK.
    J Proteome Res; 2009 Sep 09; 8(9):4225-30. PubMed ID: 19639939
    [Abstract] [Full Text] [Related]

  • 19. Realization of on-tissue protein identification by highly efficient in situ digestion with graphene-immobilized trypsin for MALDI imaging analysis.
    Jiao J, Miao A, Zhang X, Cai Y, Lu Y, Zhang Y, Lu H.
    Analyst; 2013 Mar 21; 138(6):1645-8. PubMed ID: 23364134
    [Abstract] [Full Text] [Related]

  • 20. Microchip bioreactors based on trypsin-immobilized graphene oxide-poly(urea-formaldehyde) composite coating for efficient peptide mapping.
    Fan H, Yao F, Xu S, Chen G.
    Talanta; 2013 Dec 15; 117():119-26. PubMed ID: 24209319
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 26.