These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
311 related items for PubMed ID: 22880005
1. Adaptive capacity of the habitat modifying sea urchin Centrostephanus rodgersii to ocean warming and ocean acidification: performance of early embryos. Foo SA, Dworjanyn SA, Poore AG, Byrne M. PLoS One; 2012; 7(8):e42497. PubMed ID: 22880005 [Abstract] [Full Text] [Related]
2. Increased temperature, but not acidification, enhances fertilization and development in a tropical urchin: potential for adaptation to a tropicalized eastern Australia. Foo SA, Dworjanyn SA, Khatkar MS, Poore AG, Byrne M. Evol Appl; 2014 Dec; 7(10):1226-37. PubMed ID: 25558283 [Abstract] [Full Text] [Related]
3. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming. Byrne M, Ho MA, Koleits L, Price C, King CK, Virtue P, Tilbrook B, Lamare M. Glob Chang Biol; 2013 Jul; 19(7):2264-75. PubMed ID: 23504957 [Abstract] [Full Text] [Related]
4. Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (Heliocidaris erythrogramma). Wolfe K, Dworjanyn SA, Byrne M. Glob Chang Biol; 2013 Sep; 19(9):2698-707. PubMed ID: 23649847 [Abstract] [Full Text] [Related]
5. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. Sheppard Brennand H, Soars N, Dworjanyn SA, Davis AR, Byrne M. PLoS One; 2010 Jun 29; 5(6):e11372. PubMed ID: 20613879 [Abstract] [Full Text] [Related]
6. Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Byrne M, Ho M, Selvakumaraswamy P, Nguyen HD, Dworjanyn SA, Davis AR. Proc Biol Sci; 2009 May 22; 276(1663):1883-8. PubMed ID: 19324767 [Abstract] [Full Text] [Related]
7. Staying in place and moving in space: Contrasting larval thermal sensitivity explains distributional changes of sympatric sea urchin species to habitat warming. Byrne M, Gall ML, Campbell H, Lamare MD, Holmes SP. Glob Chang Biol; 2022 May 22; 28(9):3040-3053. PubMed ID: 35108424 [Abstract] [Full Text] [Related]
8. Sea urchins in a high-CO2 world: partitioned effects of body size, ocean warming and acidification on metabolic rate. Carey N, Harianto J, Byrne M. J Exp Biol; 2016 Apr 15; 219(Pt 8):1178-86. PubMed ID: 26896541 [Abstract] [Full Text] [Related]
9. Early development of congeneric sea urchins (Heliocidaris) with contrasting life history modes in a warming and high CO2 ocean. Hardy NA, Byrne M. Mar Environ Res; 2014 Dec 15; 102():78-87. PubMed ID: 25115741 [Abstract] [Full Text] [Related]
10. Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean. Byrne M, Ho M, Wong E, Soars NA, Selvakumaraswamy P, Shepard-Brennand H, Dworjanyn SA, Davis AR. Proc Biol Sci; 2011 Aug 07; 278(1716):2376-83. PubMed ID: 21177689 [Abstract] [Full Text] [Related]
11. Differential impacts of ocean acidification and warming on winter and summer progeny of a coastal squid (Loligo vulgaris). Rosa R, Trübenbach K, Pimentel MS, Boavida-Portugal J, Faleiro F, Baptista M, Dionísio G, Calado R, Pörtner HO, Repolho T. J Exp Biol; 2014 Feb 15; 217(Pt 4):518-25. PubMed ID: 24523499 [Abstract] [Full Text] [Related]
12. Impacts of ocean acidification on sea urchin growth across the juvenile to mature adult life-stage transition is mitigated by warming. Dworjanyn SA, Byrne M. Proc Biol Sci; 2018 Apr 11; 285(1876):. PubMed ID: 29643209 [Abstract] [Full Text] [Related]
13. Robustness of larval development of intertidal sea urchin species to simulated ocean warming and acidification. García E, Hernández JC, Clemente S. Mar Environ Res; 2018 Aug 11; 139():35-45. PubMed ID: 29753493 [Abstract] [Full Text] [Related]
14. Genetic variation underlies temperature tolerance of embryos in the sea urchin Heliocidaris erythrogramma armigera. Lymbery RA, Evans JP. J Evol Biol; 2013 Oct 11; 26(10):2271-82. PubMed ID: 23980665 [Abstract] [Full Text] [Related]
15. Ocean acidification has little effect on developmental thermal windows of echinoderms from Antarctica to the tropics. Karelitz SE, Uthicke S, Foo SA, Barker MF, Byrne M, Pecorino D, Lamare MD. Glob Chang Biol; 2017 Feb 11; 23(2):657-672. PubMed ID: 27497050 [Abstract] [Full Text] [Related]
16. Sea urchins in a high-CO2 world: the influence of acclimation on the immune response to ocean warming and acidification. Brothers CJ, Harianto J, McClintock JB, Byrne M. Proc Biol Sci; 2016 Aug 31; 283(1837):. PubMed ID: 27559066 [Abstract] [Full Text] [Related]
18. Intraspecific variation in physiological performance of a benthic elasmobranch challenged by ocean acidification and warming. Di Santo V. J Exp Biol; 2016 Jun 01; 219(Pt 11):1725-33. PubMed ID: 27026716 [Abstract] [Full Text] [Related]
19. Urchin grazing of kelp gametophytes in warming oceans. Veenhof RJ, Coleman MA, Champion C, Dworjanyn SA. J Phycol; 2023 Oct 01; 59(5):838-855. PubMed ID: 37432133 [Abstract] [Full Text] [Related]
20. Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory. Rich WA, Schubert N, Schläpfer N, Carvalho VF, Horta ACL, Horta PA. Mar Environ Res; 2018 Nov 01; 142():100-107. PubMed ID: 30293660 [Abstract] [Full Text] [Related] Page: [Next] [New Search]