These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
271 related items for PubMed ID: 22884457
41. Singlet-oxygen-mediated amino acid and protein oxidation: formation of tryptophan peroxides and decomposition products. Gracanin M, Hawkins CL, Pattison DI, Davies MJ. Free Radic Biol Med; 2009 Jul 01; 47(1):92-102. PubMed ID: 19375501 [Abstract] [Full Text] [Related]
42. Human atherosclerotic plaque lipid extract impairs the antioxidant defense capacity of monocytes. Szuchman-Sapir A, Etzman M, Tamir S. Biochem Biophys Res Commun; 2012 Jul 13; 423(4):884-8. PubMed ID: 22728042 [Abstract] [Full Text] [Related]
43. Thioredoxin reductase may be essential for the normal growth of hyperbaric oxygen-treated human lens epithelial cells. Padgaonkar VA, Leverenz VR, Dang L, Chen SC, Pelliccia S, Giblin FJ. Exp Eye Res; 2004 Dec 13; 79(6):847-57. PubMed ID: 15642322 [Abstract] [Full Text] [Related]
44. The iron-catalyzed oxidation of dithiothreitol is a biphasic process: hydrogen peroxide is involved in the initiation of a free radical chain of reactions. Netto LE, Stadtman ER. Arch Biochem Biophys; 1996 Sep 01; 333(1):233-42. PubMed ID: 8806776 [Abstract] [Full Text] [Related]
46. Protective role of selenium against renal toxicity induced by cadmium in rats. El-Sharaky AS, Newairy AA, Badreldeen MM, Eweda SM, Sheweita SA. Toxicology; 2007 Jun 25; 235(3):185-93. PubMed ID: 17448585 [Abstract] [Full Text] [Related]
47. Inhibition of protein tyrosine phosphatases by amino acid, peptide, and protein hydroperoxides: potential modulation of cell signaling by protein oxidation products. Gracanin M, Davies MJ. Free Radic Biol Med; 2007 May 15; 42(10):1543-51. PubMed ID: 17448901 [Abstract] [Full Text] [Related]
48. Inhibition of glutathione S-transferase activity by the quinoid metabolites of equine estrogens. Chang M, Zhang F, Shen L, Pauss N, Alam I, van Breemen RB, Blond SY, Bolton JL. Chem Res Toxicol; 1998 Jul 15; 11(7):758-65. PubMed ID: 9671538 [Abstract] [Full Text] [Related]
49. Vitamin D is a prooxidant in breast cancer cells. Koren R, Hadari-Naor I, Zuck E, Rotem C, Liberman UA, Ravid A. Cancer Res; 2001 Feb 15; 61(4):1439-44. PubMed ID: 11245448 [Abstract] [Full Text] [Related]
50. Identification of GR and TrxR systems in Setaria cervi: Purification and characterization of glutathione reductase. Yadav SS, Srikanth E, Singh N, Rathaur S. Parasitol Int; 2013 Apr 15; 62(2):193-8. PubMed ID: 23305756 [Abstract] [Full Text] [Related]
51. Lactococcus lactis thioredoxin reductase is sensitive to light inactivation. Björnberg O, Viennet T, Skjoldager N, Ćurović A, Nielsen KF, Svensson B, Hägglund P. Biochemistry; 2015 Mar 03; 54(8):1628-37. PubMed ID: 25675241 [Abstract] [Full Text] [Related]
52. Mammalian thioredoxin reductase is irreversibly inhibited by dinitrohalobenzenes by alkylation of both the redox active selenocysteine and its neighboring cysteine residue. Nordberg J, Zhong L, Holmgren A, Arnér ES. J Biol Chem; 1998 May 01; 273(18):10835-42. PubMed ID: 9556556 [Abstract] [Full Text] [Related]
53. The structure of Lactococcus lactis thioredoxin reductase reveals molecular features of photo-oxidative damage. Skjoldager N, Blanner Bang M, Rykær M, Björnberg O, Davies MJ, Svensson B, Harris P, Hägglund P. Sci Rep; 2017 Apr 11; 7():46282. PubMed ID: 28397795 [Abstract] [Full Text] [Related]
54. Susceptibility of the antioxidant selenoenyzmes thioredoxin reductase and glutathione peroxidase to alkylation-mediated inhibition by anticancer acylfulvenes. Liu X, Pietsch KE, Sturla SJ. Chem Res Toxicol; 2011 May 16; 24(5):726-36. PubMed ID: 21443269 [Abstract] [Full Text] [Related]
55. Oxidative damage to proteins related to metals and antioxidant defenses in breastmilk. Castillo-Castañeda PC, Gaxiola-Robles R, Labrada-Martagón V, Acosta Vargas B, Méndez-Rodríguez LC, Zenteno-Savín T. Nutr Hosp; 2017 Feb 01; 34(1):59-64. PubMed ID: 28244773 [Abstract] [Full Text] [Related]
56. Selenocysteine oxidation in glutathione peroxidase catalysis: an MS-supported quantum mechanics study. Orian L, Mauri P, Roveri A, Toppo S, Benazzi L, Bosello-Travain V, De Palma A, Maiorino M, Miotto G, Zaccarin M, Polimeno A, Flohé L, Ursini F. Free Radic Biol Med; 2015 Oct 01; 87():1-14. PubMed ID: 26163004 [Abstract] [Full Text] [Related]
57. [Expression of selenoproteins in monocytes and macrophages--implications for the immune system]. Ebert-Dümig R, Seufert J, Schneider D, Köhrle J, Schütze N, Jakob F. Med Klin (Munich); 1999 Oct 15; 94 Suppl 3():29-34. PubMed ID: 10554525 [Abstract] [Full Text] [Related]
58. Roles of mammalian glutathione peroxidase and thioredoxin reductase enzymes in the cellular response to nitrosative stress. Benhar M. Free Radic Biol Med; 2018 Nov 01; 127():160-164. PubMed ID: 29378334 [Abstract] [Full Text] [Related]
59. Reaction of para-hydroxybenzoic acid esters with singlet oxygen in the presence of glutathione produces glutathione conjugates of hydroquinone, potent inducers of oxidative stress. Nishizawa C, Takeshita K, Ueda J, Nakanishi I, Suzuki KT, Ozawa T. Free Radic Res; 2006 Mar 01; 40(3):233-40. PubMed ID: 16484039 [Abstract] [Full Text] [Related]
60. Dissecting molecular interactions involved in recognition of target disulfides by the barley thioredoxin system. Björnberg O, Maeda K, Svensson B, Hägglund P. Biochemistry; 2012 Dec 11; 51(49):9930-9. PubMed ID: 23163229 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]