These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


93 related items for PubMed ID: 22885714

  • 1. Structural and oxygen binding properties of dimeric horse myoglobin.
    Nagao S, Osuka H, Yamada T, Uni T, Shomura Y, Imai K, Higuchi Y, Hirota S.
    Dalton Trans; 2012 Oct 07; 41(37):11378-85. PubMed ID: 22885714
    [Abstract] [Full Text] [Related]

  • 2. Carbon monoxide binding properties of domain-swapped dimeric myoglobin.
    Nagao S, Ishikawa H, Yamada T, Mizutani Y, Hirota S.
    J Biol Inorg Chem; 2015 Apr 07; 20(3):523-30. PubMed ID: 25578811
    [Abstract] [Full Text] [Related]

  • 3. Domain swapping of the heme and N-terminal α-helix in Hydrogenobacter thermophilus cytochrome c(552) dimer.
    Hayashi Y, Nagao S, Osuka H, Komori H, Higuchi Y, Hirota S.
    Biochemistry; 2012 Oct 30; 51(43):8608-16. PubMed ID: 23035813
    [Abstract] [Full Text] [Related]

  • 4. Electrostatic modification of the active site of myoglobin: characterization of the proximal Ser92Asp variant.
    Lloyd E, Burk DL, Ferrer JC, Maurus R, Doran J, Carey PR, Brayer GD, Mauk AG.
    Biochemistry; 1996 Sep 10; 35(36):11901-12. PubMed ID: 8794773
    [Abstract] [Full Text] [Related]

  • 5. Heme reduction by intramolecular electron transfer in cysteine mutant myoglobin under carbon monoxide atmosphere.
    Hirota S, Azuma K, Fukuba M, Kuroiwa S, Funasaki N.
    Biochemistry; 2005 Aug 02; 44(30):10322-7. PubMed ID: 16042409
    [Abstract] [Full Text] [Related]

  • 6. Dimer domain swapping versus monomer folding in apo-myoglobin studied by molecular simulations.
    Ono K, Ito M, Hirota S, Takada S.
    Phys Chem Chem Phys; 2015 Feb 21; 17(7):5006-13. PubMed ID: 25591933
    [Abstract] [Full Text] [Related]

  • 7. Stabilizing bound O2 in myoglobin by valine68 (E11) to asparagine substitution.
    Krzywda S, Murshudov GN, Brzozowski AM, Jaskolski M, Scott EE, Klizas SA, Gibson QH, Olson JS, Wilkinson AJ.
    Biochemistry; 1998 Nov 10; 37(45):15896-907. PubMed ID: 9843395
    [Abstract] [Full Text] [Related]

  • 8. The main role of inner histidines in the molecular mechanism of myoglobin oxidation catalyzed by copper compounds.
    Postnikova GB, Moiseeva SA, Shekhovtsova EA.
    Inorg Chem; 2010 Feb 15; 49(4):1347-54. PubMed ID: 20088488
    [Abstract] [Full Text] [Related]

  • 9. Distal heme pocket regulation of ligand binding and stability in soybean leghemoglobin.
    Kundu S, Hargrove MS.
    Proteins; 2003 Feb 01; 50(2):239-48. PubMed ID: 12486718
    [Abstract] [Full Text] [Related]

  • 10. Spectroscopic and electrochemical studies of horse myoglobin in dimethyl sulfoxide.
    Li QC, Mabrouk PA.
    J Biol Inorg Chem; 2003 Jan 01; 8(1-2):83-94. PubMed ID: 12459902
    [Abstract] [Full Text] [Related]

  • 11. Global mapping of structural solutions provided by the extended X-ray absorption fine structure ab initio code FEFF 6.01: structure of the cryogenic photoproduct of the myoglobin-carbon monoxide complex.
    Chance MR, Miller LM, Fischetti RF, Scheuring E, Huang WX, Sclavi B, Hai Y, Sullivan M.
    Biochemistry; 1996 Jul 16; 35(28):9014-23. PubMed ID: 8703904
    [Abstract] [Full Text] [Related]

  • 12. Residue F4 plays a key role in modulating oxygen affinity and cooperativity in Scapharca dimeric hemoglobin.
    Knapp JE, Bonham MA, Gibson QH, Nichols JC, Royer WE.
    Biochemistry; 2005 Nov 08; 44(44):14419-30. PubMed ID: 16262242
    [Abstract] [Full Text] [Related]

  • 13. Structural and functional roles of heme binding module in globin proteins: identification of the segment regulating the heme binding structure.
    Inaba K, Ishimori K, Morishima I.
    J Mol Biol; 1998 Nov 08; 283(1):311-27. PubMed ID: 9761693
    [Abstract] [Full Text] [Related]

  • 14. 'It's hollow': the function of pores within myoglobin.
    Tomita A, Kreutzer U, Adachi S, Koshihara SY, Jue T.
    J Exp Biol; 2010 Aug 15; 213(Pt 16):2748-54. PubMed ID: 20675544
    [Abstract] [Full Text] [Related]

  • 15. Introduction and characterization of a functionally linked metal ion binding site at the exposed heme edge of myoglobin.
    Hunter CL, Maurus R, Mauk MR, Lee H, Raven EL, Tong H, Nguyen N, Smith M, Brayer GD, Mauk AG.
    Proc Natl Acad Sci U S A; 2003 Apr 01; 100(7):3647-52. PubMed ID: 12644706
    [Abstract] [Full Text] [Related]

  • 16. Dynamic docking of cytochrome b5 with myoglobin and alpha-hemoglobin: heme-neutralization "squares" and the binding of electron-transfer-reactive configurations.
    Wheeler KE, Nocek JM, Cull DA, Yatsunyk LA, Rosenzweig AC, Hoffman BM.
    J Am Chem Soc; 2007 Apr 04; 129(13):3906-17. PubMed ID: 17343378
    [Abstract] [Full Text] [Related]

  • 17. Rational design of metal-binding sites in domain-swapped myoglobin dimers.
    Nagao S, Idomoto A, Shibata N, Higuchi Y, Hirota S.
    J Inorg Biochem; 2021 Apr 04; 217():111374. PubMed ID: 33578251
    [Abstract] [Full Text] [Related]

  • 18. Effect of heme modification on oxygen affinity of myoglobin and equilibrium of the acid-alkaline transition in metmyoglobin.
    Shibata T, Nagao S, Fukaya M, Tai H, Nagatomo S, Morihashi K, Matsuo T, Hirota S, Suzuki A, Imai K, Yamamoto Y.
    J Am Chem Soc; 2010 May 05; 132(17):6091-8. PubMed ID: 20392104
    [Abstract] [Full Text] [Related]

  • 19. Ligand binding properties of myoglobin reconstituted with iron porphycene: unusual O2 binding selectivity against CO binding.
    Matsuo T, Dejima H, Hirota S, Murata D, Sato H, Ikegami T, Hori H, Hisaeda Y, Hayashi T.
    J Am Chem Soc; 2004 Dec 15; 126(49):16007-17. PubMed ID: 15584735
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.