These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


242 related items for PubMed ID: 22886781

  • 1. Evaluation of the optimum volatile organic compounds control strategy considering the formation of ozone and secondary organic aerosol in Seoul, Korea.
    Shin HJ, Kim JC, Lee SJ, Kim YP.
    Environ Sci Pollut Res Int; 2013 Mar; 20(3):1468-81. PubMed ID: 22886781
    [Abstract] [Full Text] [Related]

  • 2. Ozone and secondary organic aerosol formation potential from anthropogenic volatile organic compounds emissions in China.
    Wu W, Zhao B, Wang S, Hao J.
    J Environ Sci (China); 2017 Mar; 53():224-237. PubMed ID: 28372747
    [Abstract] [Full Text] [Related]

  • 3. Ambient volatile organic compounds in the Seoul metropolitan area of South Korea: Chemical reactivity, risks and source apportionment.
    Eun DM, Han YS, Nam I, Chang Y, Lee S, Park JH, Gong SY, Youn JS.
    Environ Res; 2024 Jun 15; 251(Pt 2):118749. PubMed ID: 38522743
    [Abstract] [Full Text] [Related]

  • 4. Characteristics and health risk assessment of volatile organic compounds (VOCs) in restaurants in Shanghai.
    Huang X, Han D, Cheng J, Chen X, Zhou Y, Liao H, Dong W, Yuan C.
    Environ Sci Pollut Res Int; 2020 Jan 15; 27(1):490-499. PubMed ID: 31797266
    [Abstract] [Full Text] [Related]

  • 5. Optimization of a volatile organic compound control strategy in an oil industry center in Canada by evaluating ozone and secondary organic aerosol formation potential.
    Xiong Y, Zhou J, Xing Z, Du K.
    Environ Res; 2020 Dec 15; 191():110217. PubMed ID: 32971083
    [Abstract] [Full Text] [Related]

  • 6. Source profiles and emission factors of VOCs from solvent-based architectural coatings and their contributions to ozone and secondary organic aerosol formation in China.
    Gao M, Teng W, Du Z, Nie L, An X, Liu W, Sun X, Shen Z, Shi A.
    Chemosphere; 2021 Jul 15; 275():129815. PubMed ID: 33639547
    [Abstract] [Full Text] [Related]

  • 7. Multi-year evaluation of ambient volatile organic compounds: temporal variation, ozone formation, meteorological parameters, and sources.
    Kim KH, Chun HH, Jo WK.
    Environ Monit Assess; 2015 Feb 15; 187(2):27. PubMed ID: 25632908
    [Abstract] [Full Text] [Related]

  • 8. [Estimation of the formation potential of ozone and secondary organic aerosol in Shanghai in spring].
    Cui HX.
    Huan Jing Ke Xue; 2013 Dec 15; 34(12):4529-34. PubMed ID: 24640886
    [Abstract] [Full Text] [Related]

  • 9. Source apportionment of volatile organic compounds in Tehran, Iran.
    Sarkhosh M, Mahvi AH, Yunesian M, Nabizadeh R, Borji SH, Bajgirani AG.
    Bull Environ Contam Toxicol; 2013 Apr 15; 90(4):440-5. PubMed ID: 23283536
    [Abstract] [Full Text] [Related]

  • 10. Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: A study in Shuozhou, China.
    Yan Y, Peng L, Li R, Li Y, Li L, Bai H.
    Environ Pollut; 2017 Apr 15; 223():295-304. PubMed ID: 28131475
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Emission factors, ozone and secondary organic aerosol formation potential of volatile organic compounds emitted from industrial biomass boilers.
    Geng C, Yang W, Sun X, Wang X, Bai Z, Zhang X.
    J Environ Sci (China); 2019 Sep 15; 83():64-72. PubMed ID: 31221388
    [Abstract] [Full Text] [Related]

  • 13. Ozone and SOA formation potential based on photochemical loss of VOCs during the Beijing summer.
    Zhan J, Feng Z, Liu P, He X, He Z, Chen T, Wang Y, He H, Mu Y, Liu Y.
    Environ Pollut; 2021 Sep 15; 285():117444. PubMed ID: 34090068
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Comparative investigation of coal- and oil-fired boilers based on emission factors, ozone and secondary organic aerosol formation potentials of VOCs.
    Yang HH, Gupta SK, Dhital NB, Wang LC, Elumalai SP.
    J Environ Sci (China); 2020 Jun 15; 92():245-255. PubMed ID: 32430127
    [Abstract] [Full Text] [Related]

  • 17. Decadal changes in emissions of volatile organic compounds (VOCs) from on-road vehicles with intensified automobile pollution control: Case study in a busy urban tunnel in south China.
    Zhang Y, Yang W, Simpson I, Huang X, Yu J, Huang Z, Wang Z, Zhang Z, Liu D, Huang Z, Wang Y, Pei C, Shao M, Blake DR, Zheng J, Huang Z, Wang X.
    Environ Pollut; 2018 Feb 15; 233():806-819. PubMed ID: 29144986
    [Abstract] [Full Text] [Related]

  • 18. [Characteristics of VOCs and Formation Potentials of O3 and SOA in Autumn and Winter in Tongchuan, China].
    Yi XX, Li JH, Li GH, Lu ZZ, Sun ZG, Gao J, Deng SX.
    Huan Jing Ke Xue; 2022 Jan 08; 43(1):140-149. PubMed ID: 34989498
    [Abstract] [Full Text] [Related]

  • 19. Characteristics of volatile organic compounds in the metropolitan city of Seoul, South Korea: Diurnal variation, source identification, secondary formation of organic aerosol, and health risk.
    Kim SJ, Lee SJ, Lee HY, Son JM, Lim HB, Kim HW, Shin HJ, Lee JY, Choi SD.
    Sci Total Environ; 2022 Sep 10; 838(Pt 3):156344. PubMed ID: 35654203
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.