These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. On the variations of acoustic absorption peak with particle velocity in micro-perforated panels at high level of excitation. Tayong R, Dupont T, Leclaire P. J Acoust Soc Am; 2010 May; 127(5):2875-82. PubMed ID: 21117738 [Abstract] [Full Text] [Related]
4. An electromechanical low frequency panel sound absorber. Chang D, Liu B, Li X. J Acoust Soc Am; 2010 Aug; 128(2):639-45. PubMed ID: 20707433 [Abstract] [Full Text] [Related]
6. Sound absorption of a micro-perforated panel backed by an irregular-shaped cavity. Wang C, Cheng L, Pan J, Yu G. J Acoust Soc Am; 2010 Jan; 127(1):238-46. PubMed ID: 20058969 [Abstract] [Full Text] [Related]
7. Sound absorption and transmission through flexible micro-perforated panels backed by an air layer and a thin plate. Bravo T, Maury C, Pinhède C. J Acoust Soc Am; 2012 May; 131(5):3853-63. PubMed ID: 22559361 [Abstract] [Full Text] [Related]
8. Absorption of oblique incidence sound by a finite micro-perforated panel absorber. Yang C, Cheng L, Pan J. J Acoust Soc Am; 2013 Jan; 133(1):201-9. PubMed ID: 23297895 [Abstract] [Full Text] [Related]
9. Vibroacoustic behavior of clamp mounted double-panel partition with enclosure air cavity. Xin FX, Lu TJ, Chen CQ. J Acoust Soc Am; 2008 Dec; 124(6):3604-12. PubMed ID: 19206789 [Abstract] [Full Text] [Related]
10. Sound transmission through finite lightweight multilayered structures with thin air layers. Dijckmans A, Vermeir G, Lauriks W. J Acoust Soc Am; 2010 Dec; 128(6):3513-24. PubMed ID: 21218884 [Abstract] [Full Text] [Related]
11. High frequency acoustic transmission loss of perforated plates at normal incidence. Phong V, Papamoschou D. J Acoust Soc Am; 2013 Aug; 134(2):1090-101. PubMed ID: 23927109 [Abstract] [Full Text] [Related]
12. On the acoustic properties of parallel arrangement of multiple micro-perforated panel absorbers with different cavity depths. Wang C, Huang L. J Acoust Soc Am; 2011 Jul; 130(1):208-18. PubMed ID: 21786891 [Abstract] [Full Text] [Related]
13. Total absorption peak by use of a rigid frame porous layer backed by a rigid multi-irregularities grating. Groby JP, Lauriks W, Vigran TE. J Acoust Soc Am; 2010 May; 127(5):2865-74. PubMed ID: 21117737 [Abstract] [Full Text] [Related]
14. Sound absorption of a finite micro-perforated panel backed by a shunted loudspeaker. Tao J, Jing R, Qiu X. J Acoust Soc Am; 2014 Jan; 135(1):231-8. PubMed ID: 24437763 [Abstract] [Full Text] [Related]
15. Sound transmission of cavity walls due to structure borne transmission via point and line connections. Davy JL. J Acoust Soc Am; 2012 Aug; 132(2):814-21. PubMed ID: 22894204 [Abstract] [Full Text] [Related]
16. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: robust virtual sensor design. Halim D, Cheng L, Su Z. J Acoust Soc Am; 2011 Mar; 129(3):1390-9. PubMed ID: 21428503 [Abstract] [Full Text] [Related]
17. Theoretical and experimental study on active sound transmission control based on single structural mode actuation using point force actuators. Sanada A, Tanaka N. J Acoust Soc Am; 2012 Aug; 132(2):767-78. PubMed ID: 22894199 [Abstract] [Full Text] [Related]
18. Influence of static compression on mechanical parameters of acoustic foams. Geslain A, Dazel O, Groby JP, Sahraoui S, Lauriks W. J Acoust Soc Am; 2011 Aug; 130(2):818-25. PubMed ID: 21877797 [Abstract] [Full Text] [Related]
19. Ultrasonic airborne insertion loss measurements at normal incidence (L). Farley J, Anderson BE. J Acoust Soc Am; 2010 Dec; 128(6):3305-7. PubMed ID: 21218864 [Abstract] [Full Text] [Related]
20. Development of a hybrid wave based-transfer matrix model for sound transmission analysis. Dijckmans A, Vermeir G. J Acoust Soc Am; 2013 Apr; 133(4):2157-68. PubMed ID: 23556585 [Abstract] [Full Text] [Related] Page: [Next] [New Search]