These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


109 related items for PubMed ID: 22897684

  • 1. BRCT domain of DNA polymerase μ has DNA-binding activity and promotes the DNA polymerization activity.
    Matsumoto T, Go K, Hyodo M, Koiwai K, Maezawa S, Hayano T, Suzuki M, Koiwai O.
    Genes Cells; 2012 Sep; 17(9):790-806. PubMed ID: 22897684
    [Abstract] [Full Text] [Related]

  • 2. Structural evidence for an in trans base selection mechanism involving Loop1 in polymerase μ at an NHEJ double-strand break junction.
    Loc'h J, Gerodimos CA, Rosario S, Tekpinar M, Lieber MR, Delarue M.
    J Biol Chem; 2019 Jul 05; 294(27):10579-10595. PubMed ID: 31138645
    [Abstract] [Full Text] [Related]

  • 3. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7.
    Rodriguez AC, Park HW, Mao C, Beese LS.
    J Mol Biol; 2000 Jun 02; 299(2):447-62. PubMed ID: 10860752
    [Abstract] [Full Text] [Related]

  • 4. Nonoverlapping functions of DNA polymerases mu, lambda, and terminal deoxynucleotidyltransferase during immunoglobulin V(D)J recombination in vivo.
    Bertocci B, De Smet A, Weill JC, Reynaud CA.
    Immunity; 2006 Jul 02; 25(1):31-41. PubMed ID: 16860755
    [Abstract] [Full Text] [Related]

  • 5. A comparison of BRCT domains involved in nonhomologous end-joining: introducing the solution structure of the BRCT domain of polymerase lambda.
    Mueller GA, Moon AF, Derose EF, Havener JM, Ramsden DA, Pedersen LC, London RE.
    DNA Repair (Amst); 2008 Aug 02; 7(8):1340-51. PubMed ID: 18585102
    [Abstract] [Full Text] [Related]

  • 6. Structural relationship of curcumin derivatives binding to the BRCT domain of human DNA polymerase lambda.
    Takeuchi T, Ishidoh T, Iijima H, Kuriyama I, Shimazaki N, Koiwai O, Kuramochi K, Kobayashi S, Sugawara F, Sakaguchi K, Yoshida H, Mizushina Y.
    Genes Cells; 2006 Mar 02; 11(3):223-35. PubMed ID: 16483311
    [Abstract] [Full Text] [Related]

  • 7. DNA polymerase mu, a candidate hypermutase?
    Ruiz JF, Domínguez O, Laín de Lera T, Garcia-Díaz M, Bernad A, Blanco L.
    Philos Trans R Soc Lond B Biol Sci; 2001 Jan 29; 356(1405):99-109. PubMed ID: 11205337
    [Abstract] [Full Text] [Related]

  • 8. DNA polymerase mu (Pol mu), homologous to TdT, could act as a DNA mutator in eukaryotic cells.
    Domínguez O, Ruiz JF, Laín de Lera T, García-Díaz M, González MA, Kirchhoff T, Martínez-A C, Bernad A, Blanco L.
    EMBO J; 2000 Apr 03; 19(7):1731-42. PubMed ID: 10747040
    [Abstract] [Full Text] [Related]

  • 9. DNA polymerase lambda directly binds to proliferating cell nuclear antigen through its confined C-terminal region.
    Shimazaki N, Yazaki T, Kubota T, Sato A, Nakamura A, Kurei S, Toji S, Tamai K, Koiwai O.
    Genes Cells; 2005 Jul 03; 10(7):705-15. PubMed ID: 15966901
    [Abstract] [Full Text] [Related]

  • 10. DNA polymerase lambda (Pol lambda), a novel eukaryotic DNA polymerase with a potential role in meiosis.
    García-Díaz M, Domínguez O, López-Fernández LA, de Lera LT, Saníger ML, Ruiz JF, Párraga M, García-Ortiz MJ, Kirchhoff T, del Mazo J, Bernad A, Blanco L.
    J Mol Biol; 2000 Aug 25; 301(4):851-67. PubMed ID: 10966791
    [Abstract] [Full Text] [Related]

  • 11. Crystal structures of human DNA polymerase beta complexed with DNA: implications for catalytic mechanism, processivity, and fidelity.
    Pelletier H, Sawaya MR, Wolfle W, Wilson SH, Kraut J.
    Biochemistry; 1996 Oct 01; 35(39):12742-61. PubMed ID: 8841118
    [Abstract] [Full Text] [Related]

  • 12. Solution structure of a viral DNA repair polymerase.
    Maciejewski MW, Shin R, Pan B, Marintchev A, Denninger A, Mullen MA, Chen K, Gryk MR, Mullen GP.
    Nat Struct Biol; 2001 Nov 01; 8(11):936-41. PubMed ID: 11685238
    [Abstract] [Full Text] [Related]

  • 13. Solution structure of polymerase mu's BRCT Domain reveals an element essential for its role in nonhomologous end joining.
    DeRose EF, Clarkson MW, Gilmore SA, Galban CJ, Tripathy A, Havener JM, Mueller GA, Ramsden DA, London RE, Lee AL.
    Biochemistry; 2007 Oct 30; 46(43):12100-10. PubMed ID: 17915942
    [Abstract] [Full Text] [Related]

  • 14. A gradient of template dependence defines distinct biological roles for family X polymerases in nonhomologous end joining.
    Nick McElhinny SA, Havener JM, Garcia-Diaz M, Juárez R, Bebenek K, Kee BL, Blanco L, Kunkel TA, Ramsden DA.
    Mol Cell; 2005 Aug 05; 19(3):357-66. PubMed ID: 16061182
    [Abstract] [Full Text] [Related]

  • 15. Saving the ends for last: the role of pol mu in DNA end joining.
    Paull TT.
    Mol Cell; 2005 Aug 05; 19(3):294-6. PubMed ID: 16061176
    [Abstract] [Full Text] [Related]

  • 16. Residues at the carboxy terminus of T4 DNA polymerase are important determinants for interaction with the polymerase accessory proteins.
    Goodrich LD, Lin TC, Spicer EK, Jones C, Konigsberg WH.
    Biochemistry; 1997 Aug 26; 36(34):10474-81. PubMed ID: 9265627
    [Abstract] [Full Text] [Related]

  • 17. Domain organization and DNA-induced conformational changes of an archaeal family B DNA polymerase.
    Pisani FM, Manco G, Carratore V, Rossi M.
    Biochemistry; 1996 Jul 16; 35(28):9158-66. PubMed ID: 8703921
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.