These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. SACICA: a sparse approximation coefficient-based ICA model for functional magnetic resonance imaging data analysis. Wang N, Zeng W, Chen L. J Neurosci Methods; 2013 May 30; 216(1):49-61. PubMed ID: 23563324 [Abstract] [Full Text] [Related]
4. On applicability of PCA, voxel-wise variance normalization and dimensionality assumptions for sliding temporal window sICA in resting-state fMRI. Remes JJ, Abou Elseoud A, Ollila E, Haapea M, Starck T, Nikkinen J, Tervonen O, Silven O. Magn Reson Imaging; 2013 Oct 30; 31(8):1338-48. PubMed ID: 23845397 [Abstract] [Full Text] [Related]
11. Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis. Sato JR, Fujita A, Cardoso EF, Thomaz CE, Brammer MJ, Amaro E. Neuroimage; 2010 Oct 01; 52(4):1444-55. PubMed ID: 20472076 [Abstract] [Full Text] [Related]
12. Probabilistic framework for brain connectivity from functional MR images. Rajapakse JC, Wang Y, Zheng X, Zhou J. IEEE Trans Med Imaging; 2008 Jun 01; 27(6):825-33. PubMed ID: 18541489 [Abstract] [Full Text] [Related]
19. Using ICA and realistic BOLD models to obtain joint EEG/fMRI solutions to the problem of source localization. Brookings T, Ortigue S, Grafton S, Carlson J. Neuroimage; 2009 Jan 15; 44(2):411-20. PubMed ID: 18845263 [Abstract] [Full Text] [Related]