These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


212 related items for PubMed ID: 22899298

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes.
    Chu H, Doh I, Cho YH.
    Lab Chip; 2009 Mar 07; 9(5):686-91. PubMed ID: 19224018
    [Abstract] [Full Text] [Related]

  • 6. High throughput particle analysis: combining dielectrophoretic particle focussing with confocal optical detection.
    Holmes D, Morgan H, Green NG.
    Biosens Bioelectron; 2006 Feb 15; 21(8):1621-30. PubMed ID: 16332434
    [Abstract] [Full Text] [Related]

  • 7. Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing.
    Gawad S, Schild L, Renaud PH.
    Lab Chip; 2001 Sep 15; 1(1):76-82. PubMed ID: 15100895
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequences.
    Sun T, Holmes D, Gawad S, Green NG, Morgan H.
    Lab Chip; 2007 Aug 15; 7(8):1034-40. PubMed ID: 17653346
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Analytical electric field and sensitivity analysis for two microfluidic impedance cytometer designs.
    Sun T, Green NG, Gawad S, Morgan H.
    IET Nanobiotechnol; 2007 Oct 15; 1(5):69-79. PubMed ID: 17764376
    [Abstract] [Full Text] [Related]

  • 13. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles.
    Yang D, Ai Y.
    Lab Chip; 2019 Nov 07; 19(21):3609-3617. PubMed ID: 31517354
    [Abstract] [Full Text] [Related]

  • 14. Microfluidic impedance-based flow cytometry.
    Cheung KC, Di Berardino M, Schade-Kampmann G, Hebeisen M, Pierzchalski A, Bocsi J, Mittag A, Tárnok A.
    Cytometry A; 2010 Jul 07; 77(7):648-66. PubMed ID: 20583276
    [Abstract] [Full Text] [Related]

  • 15. Fabrication and evaluation of a ratchet type dielectrophoretic device for particle analysis.
    Gonzalez CF, Remcho VT.
    J Chromatogr A; 2009 Dec 25; 1216(52):9063-70. PubMed ID: 19931864
    [Abstract] [Full Text] [Related]

  • 16. The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform.
    Martinez-Duarte R, Gorkin RA, Abi-Samra K, Madou MJ.
    Lab Chip; 2010 Apr 21; 10(8):1030-43. PubMed ID: 20358111
    [Abstract] [Full Text] [Related]

  • 17. A novel approach to dielectrophoresis using carbon electrodes.
    Martinez-Duarte R, Renaud P, Madou MJ.
    Electrophoresis; 2011 Sep 21; 32(17):2385-92. PubMed ID: 21792991
    [Abstract] [Full Text] [Related]

  • 18. A MEMS-based spiral channel dielectrophoretic chromatography system for cytometry applications.
    Yilmaz G, Ciftlik AT, Külah H.
    Biotechnol J; 2011 Feb 21; 6(2):185-94. PubMed ID: 20949543
    [Abstract] [Full Text] [Related]

  • 19. Disposable flow cytometer with high efficiency in particle counting and sizing using an optofluidic lens.
    Song C, Luong TD, Kong TF, Nguyen NT, Asundi AK.
    Opt Lett; 2011 Mar 01; 36(5):657-9. PubMed ID: 21368939
    [Abstract] [Full Text] [Related]

  • 20. Separation of particles by pulsed dielectrophoresis.
    Cui HH, Voldman J, He XF, Lim KM.
    Lab Chip; 2009 Aug 21; 9(16):2306-12. PubMed ID: 19636460
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.