These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
152 related items for PubMed ID: 22908628
1. Effect of corn plant on survival and phenanthrene degradation capacity of Pseudomonas sp. UG14LR in two soils. Chouychai W, Thongkukiatkul A, Upatham S, Pokethitiyook P, Kruatrachue M, Lee H. Int J Phytoremediation; 2012 Jul; 14(6):585-95. PubMed ID: 22908628 [Abstract] [Full Text] [Related]
2. Plant-enhanced phenanthrene and pyrene biodegradation in acidic soil. Chouychai W, Thongkukiatkul A, Upatham S, Lee H, Pokethitiyook P, Kruatrachue M. J Environ Biol; 2009 Jan; 30(1):139-44. PubMed ID: 20112876 [Abstract] [Full Text] [Related]
3. Phytotoxicity assay of crop plants to phenanthrene and pyrene contaminants in acidic soil. Chouychai W, Thongkukiatkul A, Upatham S, Lee H, Pokethitiyook P, Kruatrachue M. Environ Toxicol; 2007 Dec; 22(6):597-604. PubMed ID: 18000845 [Abstract] [Full Text] [Related]
4. Nutrient-enhanced survival of and phenanthrene mineralization by alginate-encapsulated and free Pseudomonas sp. UG14Lr cells in creosote-contaminated soil slurries. Weir SC, Dupuis SP, Providenti MA, Lee H, Trevors JT. Appl Microbiol Biotechnol; 1995 Oct; 43(5):946-51. PubMed ID: 7576562 [Abstract] [Full Text] [Related]
5. Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation. Xu SY, Chen YX, Wu WX, Wang KX, Lin Q, Liang XQ. Sci Total Environ; 2006 Jun 15; 363(1-3):206-15. PubMed ID: 15985280 [Abstract] [Full Text] [Related]
6. Interactions of rice (Oryza sativa L.) and PAH-degrading bacteria (Acinetobacter sp.) on enhanced dissipation of spiked phenanthrene and pyrene in waterlogged soil. Gao Y, Yu XZ, Wu SC, Cheung KC, Tam NF, Qian PY, Wong MH. Sci Total Environ; 2006 Dec 15; 372(1):1-11. PubMed ID: 17081596 [Abstract] [Full Text] [Related]
7. Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. Lee SH, Lee WS, Lee CH, Kim JG. J Hazard Mater; 2008 May 01; 153(1-2):892-8. PubMed ID: 17959304 [Abstract] [Full Text] [Related]
8. Uptake and accumulation of phenanthrene and pyrene in spiked soils by Ryegrass (Lolium perenne L.). Xu SY, Chen YX, Lin Q, Wu WX, Xue SG, Shen CF. J Environ Sci (China); 2005 May 01; 17(5):817-22. PubMed ID: 16313010 [Abstract] [Full Text] [Related]
9. [Study on phytoremediation of phenanthrene-contaminated soil with alfalfa (Medicago sativa L.)]. Fan SX, Li PJ, Gong ZQ, He N, Zhang LH, Ren WX, Verkhozina VA. Huan Jing Ke Xue; 2007 Sep 01; 28(9):2080-4. PubMed ID: 17990561 [Abstract] [Full Text] [Related]
10. Plant enhanced degradation of phenanthrene in the contaminated soil. Liao M, Xie XM. J Environ Sci (China); 2006 Sep 01; 18(3):510-3. PubMed ID: 17294648 [Abstract] [Full Text] [Related]
11. [Biodegradation of phenanthrene by Pseudomonas bacteria bearing rhizospheric plasmids in model plant-microbial associations]. Anokhina TO, Kochetkov VV, Zelenkova NF, Balakshina VV, Boronin AM. Prikl Biokhim Mikrobiol; 2004 Sep 01; 40(6):654-8. PubMed ID: 15609856 [Abstract] [Full Text] [Related]
12. Enhanced dissipation of phenanthrene in spiked soil by arbuscular mycorrhizal alfalfa combined with a non-ionic surfactant amendment. Wu N, Zhang S, Huang H, Christie P. Sci Total Environ; 2008 May 15; 394(2-3):230-6. PubMed ID: 18313725 [Abstract] [Full Text] [Related]
13. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Gao Y, Zhu L. Chemosphere; 2004 Jun 15; 55(9):1169-78. PubMed ID: 15081757 [Abstract] [Full Text] [Related]
14. Bioavailability and degradation of phenanthrene in compost amended soils. Puglisi E, Cappa F, Fragoulis G, Trevisan M, Del Re AA. Chemosphere; 2007 Mar 15; 67(3):548-56. PubMed ID: 17125813 [Abstract] [Full Text] [Related]
15. The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil. O'Mahony MM, Dobson AD, Barnes JD, Singleton I. Chemosphere; 2006 Apr 15; 63(2):307-14. PubMed ID: 16153687 [Abstract] [Full Text] [Related]
16. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. Lin Q, Shen KL, Zhao HM, Li WH. J Hazard Mater; 2008 Feb 11; 150(3):515-21. PubMed ID: 17574741 [Abstract] [Full Text] [Related]
17. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil. Oyelami AO, Okere UV, Orwin KH, De Deyn GB, Jones KC, Semple KT. Environ Pollut; 2013 Feb 11; 173():231-7. PubMed ID: 23202655 [Abstract] [Full Text] [Related]
18. Plant uptake and enhanced dissipation of di(2-ethylhexyl) phthalate (DEHP) in spiked soils by different plant species. Li YW, Cai QY, Mo CH, Zeng QY, Lü H, Li QS, Xu GS. Int J Phytoremediation; 2014 Feb 11; 16(6):609-20. PubMed ID: 24912246 [Abstract] [Full Text] [Related]
19. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium. Hechmi N, Ben Aissa N, Abdennaceur H, Jedidi N. Int J Phytoremediation; 2013 Feb 11; 15(7):703-13. PubMed ID: 23819269 [Abstract] [Full Text] [Related]
20. The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Afzal M, Yousaf S, Reichenauer TG, Sessitsch A. Int J Phytoremediation; 2012 Jan 11; 14(1):35-47. PubMed ID: 22567693 [Abstract] [Full Text] [Related] Page: [Next] [New Search]