These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


152 related items for PubMed ID: 22908628

  • 21. Cysteine-β-cyclodextrin enhanced phytoremediation of soil co-contaminated with phenanthrene and lead.
    Wang G, Wang Y, Hu S, Deng N, Wu F.
    Environ Sci Pollut Res Int; 2015 Jul; 22(13):10107-15. PubMed ID: 25687612
    [Abstract] [Full Text] [Related]

  • 22. Effect of metal tolerant plant growth promoting bacteria on growth and metal accumulation in Zea mays plants grown in fly ash amended soil.
    Kumar KV, Patra DD.
    Int J Phytoremediation; 2013 Jul; 15(8):743-55. PubMed ID: 23819272
    [Abstract] [Full Text] [Related]

  • 23. Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation.
    Cheema SA, Imran Khan M, Shen C, Tang X, Farooq M, Chen L, Zhang C, Chen Y.
    J Hazard Mater; 2010 May 15; 177(1-3):384-9. PubMed ID: 20079966
    [Abstract] [Full Text] [Related]

  • 24. The impact of carbon nanomaterials on the development of phenanthrene catabolism in soil.
    Oyelami AO, Semple KT.
    Environ Sci Process Impacts; 2015 Jul 15; 17(7):1302-10. PubMed ID: 26067741
    [Abstract] [Full Text] [Related]

  • 25. [Phenanthrene degradation by bacteria of the genera Pseudomonas and Burkholderia in model soil systems].
    Puntus IF, Filonov AE, Akhmetov LI, Karpov AV, Boronin AM.
    Mikrobiologiia; 2008 Jul 15; 77(1):11-20. PubMed ID: 18365717
    [Abstract] [Full Text] [Related]

  • 26. Impact of activated charcoal on the mineralisation of 14C-phenanthrene in soils.
    Rhodes AH, McAllister LE, Chen R, Semple KT.
    Chemosphere; 2010 Apr 15; 79(4):463-9. PubMed ID: 20171713
    [Abstract] [Full Text] [Related]

  • 27. Effects of maize root exudates and organic acids on the desorption of phenanthrene from soils.
    Zhu Y, Zhang S, Huang H, Wen B.
    J Environ Sci (China); 2009 Apr 15; 21(7):920-6. PubMed ID: 19862957
    [Abstract] [Full Text] [Related]

  • 28. Isolation and characterization of a novel phenanthrene (PHE) degrading strain Psuedomonas sp. USTB-RU from petroleum contaminated soil.
    Masakorala K, Yao J, Cai M, Chandankere R, Yuan H, Chen H.
    J Hazard Mater; 2013 Dec 15; 263 Pt 2():493-500. PubMed ID: 24225588
    [Abstract] [Full Text] [Related]

  • 29. Use of biosurfactant to remediate phenanthrene-contaminated soil by the combined solubilization-biodegradation process.
    Shin KH, Kim KW, Ahn Y.
    J Hazard Mater; 2006 Oct 11; 137(3):1831-7. PubMed ID: 16787705
    [Abstract] [Full Text] [Related]

  • 30. Fate and behaviour of phenanthrene in the natural and artificial soils.
    Hofman J, Rhodes A, Semple KT.
    Environ Pollut; 2008 Mar 11; 152(2):468-75. PubMed ID: 17850942
    [Abstract] [Full Text] [Related]

  • 31. [Effects of fungi on co-metabolic degradation of benzo [a] pyrene in droughty red soil].
    Liu SL, Luo YM, Wu LH, Cao ZH.
    Huan Jing Ke Xue; 2010 Aug 11; 31(8):1944-50. PubMed ID: 21090318
    [Abstract] [Full Text] [Related]

  • 32. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost.
    Marchal G, Smith KE, Rein A, Winding A, Trapp S, Karlson UG.
    Chemosphere; 2013 Feb 11; 90(6):1767-78. PubMed ID: 22921652
    [Abstract] [Full Text] [Related]

  • 33. Influence of black carbon addition on phenanthrene dissipation and microbial community structure in soil.
    Wang P, Wang H, Wu L, Di H, He Y, Xu J.
    Environ Pollut; 2012 Feb 11; 161():121-7. PubMed ID: 22230076
    [Abstract] [Full Text] [Related]

  • 34. The influence of a NAPL on the loss and biodegradation of 14C-phenanthrene residues in two dissimilar soils.
    Swindell AL, Reid BJ.
    Chemosphere; 2007 Jan 11; 66(2):332-9. PubMed ID: 16766015
    [Abstract] [Full Text] [Related]

  • 35. Effect of Plant Growth Regulators on Phytoremediation of Hexachlorocyclohexane-Contaminated Soil.
    Chouychai W, Kruatrachue M, Lee H.
    Int J Phytoremediation; 2015 Jan 11; 17(11):1053-9. PubMed ID: 25985054
    [Abstract] [Full Text] [Related]

  • 36. Degradation, phytoprotection and phytoremediation of phenanthrene by endophyte Pseudomonas putida, PD1.
    Khan Z, Roman D, Kintz T, delas Alas M, Yap R, Doty S.
    Environ Sci Technol; 2014 Oct 21; 48(20):12221-8. PubMed ID: 25275224
    [Abstract] [Full Text] [Related]

  • 37. Plant uptake of aldicarb from contaminated soil and its enhanced degradation in the rhizosphere.
    Sun H, Xu J, Yang S, Liu G, Dai S.
    Chemosphere; 2004 Jan 21; 54(4):569-74. PubMed ID: 14581059
    [Abstract] [Full Text] [Related]

  • 38. Copper-resistant bacteria enhance plant growth and copper phytoextraction.
    Yang R, Luo C, Chen Y, Wang G, Xu Y, Shen Z.
    Int J Phytoremediation; 2013 Jan 21; 15(6):573-84. PubMed ID: 23819298
    [Abstract] [Full Text] [Related]

  • 39. Phenanthrene and pyrene uptake by arbuscular mycorrhizal maize and their dissipation in soil.
    Wu FY, Yu XZ, Wu SC, Lin XG, Wong MH.
    J Hazard Mater; 2011 Mar 15; 187(1-3):341-7. PubMed ID: 21282002
    [Abstract] [Full Text] [Related]

  • 40. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation.
    Prabhu Y, Phale PS.
    Appl Microbiol Biotechnol; 2003 May 15; 61(4):342-51. PubMed ID: 12743764
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.