These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


181 related items for PubMed ID: 22916302

  • 1. Transcriptomics and comparative analysis of three antarctic notothenioid fishes.
    Shin SC, Kim SJ, Lee JK, Ahn DH, Kim MG, Lee H, Lee J, Kim BK, Park H.
    PLoS One; 2012; 7(8):e43762. PubMed ID: 22916302
    [Abstract] [Full Text] [Related]

  • 2. Draft genome of the Antarctic dragonfish, Parachaenichthys charcoti.
    Ahn DH, Shin SC, Kim BM, Kang S, Kim JH, Ahn I, Park J, Park H.
    Gigascience; 2017 Aug 01; 6(8):1-6. PubMed ID: 28873966
    [Abstract] [Full Text] [Related]

  • 3. Model of gene expression in extreme cold - reference transcriptome for the high-Antarctic cryopelagic notothenioid fish Pagothenia borchgrevinki.
    Bilyk KT, Cheng CH.
    BMC Genomics; 2013 Sep 21; 14():634. PubMed ID: 24053439
    [Abstract] [Full Text] [Related]

  • 4. Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish.
    Chen Z, Cheng CH, Zhang J, Cao L, Chen L, Zhou L, Jin Y, Ye H, Deng C, Dai Z, Xu Q, Hu P, Sun S, Shen Y, Chen L.
    Proc Natl Acad Sci U S A; 2008 Sep 02; 105(35):12944-9. PubMed ID: 18753634
    [Abstract] [Full Text] [Related]

  • 5. The genomic basis for colonizing the freezing Southern Ocean revealed by Antarctic toothfish and Patagonian robalo genomes.
    Chen L, Lu Y, Li W, Ren Y, Yu M, Jiang S, Fu Y, Wang J, Peng S, Bilyk KT, Murphy KR, Zhuang X, Hune M, Zhai W, Wang W, Xu Q, Cheng CC.
    Gigascience; 2019 Apr 01; 8(4):. PubMed ID: 30715292
    [Abstract] [Full Text] [Related]

  • 6. Positive Darwinian selection operating on the immunoglobulin heavy chain of Antarctic fishes.
    Ota T, Nguyen TA, Huang E, Detrich HW, Amemiya CT.
    J Exp Zool B Mol Dev Evol; 2003 Feb 15; 295(1):45-58. PubMed ID: 12548542
    [Abstract] [Full Text] [Related]

  • 7. The effect of temperature adaptation on the ubiquitin-proteasome pathway in notothenioid fishes.
    Todgham AE, Crombie TA, Hofmann GE.
    J Exp Biol; 2017 Feb 01; 220(Pt 3):369-378. PubMed ID: 27872216
    [Abstract] [Full Text] [Related]

  • 8. Is cold the new hot? Elevated ubiquitin-conjugated protein levels in tissues of Antarctic fish as evidence for cold-denaturation of proteins in vivo.
    Todgham AE, Hoaglund EA, Hofmann GE.
    J Comp Physiol B; 2007 Nov 01; 177(8):857-66. PubMed ID: 17710411
    [Abstract] [Full Text] [Related]

  • 9. Antarctic notothenioid fishes: genomic resources and strategies for analyzing an adaptive radiation.
    Detrich HW, Amemiya CT.
    Integr Comp Biol; 2010 Dec 01; 50(6):1009-17. PubMed ID: 21082069
    [Abstract] [Full Text] [Related]

  • 10. Characterization of the intestinal microbiota of two Antarctic notothenioid fish species.
    Ward NL, Steven B, Penn K, Methé BA, Detrich WH.
    Extremophiles; 2009 Jul 01; 13(4):679-85. PubMed ID: 19472032
    [Abstract] [Full Text] [Related]

  • 11. Heterogeneity and structure of brain tubulins from cold-adapted Antarctic fishes. Comparison to brain tubulins from a temperate fish and a mammal.
    Detrich HW, Overton SA.
    J Biol Chem; 1986 Aug 15; 261(23):10922-30. PubMed ID: 3733739
    [Abstract] [Full Text] [Related]

  • 12. Evolution, organization, and expression of alpha-tubulin genes in the antarctic fish Notothenia coriiceps. Adaptive expansion of a gene family by recent gene duplication, inversion, and divergence.
    Parker SK, Detrich HW.
    J Biol Chem; 1998 Dec 18; 273(51):34358-69. PubMed ID: 9852102
    [Abstract] [Full Text] [Related]

  • 13. The evolution of thermal adaptation in polar fish.
    Verde C, Parisi E, di Prisco G.
    Gene; 2006 Dec 30; 385():137-45. PubMed ID: 16757135
    [Abstract] [Full Text] [Related]

  • 14. Cold-Driven Hemoglobin Evolution in Antarctic Notothenioid Fishes Prior to Hemoglobin Gene Loss in White-Blooded Icefishes.
    Desvignes T, Bista I, Herrera K, Landes A, Postlethwait JH.
    Mol Biol Evol; 2023 Nov 03; 40(11):. PubMed ID: 37879119
    [Abstract] [Full Text] [Related]

  • 15. Microtubule assembly in cold-adapted organisms: functional properties and structural adaptations of tubulins from antarctic fishes.
    Detrich HW.
    Comp Biochem Physiol A Physiol; 1997 Nov 03; 118(3):501-13. PubMed ID: 9406432
    [Abstract] [Full Text] [Related]

  • 16. Adaptations and Diversity of Antarctic Fishes: A Genomic Perspective.
    Daane JM, Detrich HW.
    Annu Rev Anim Biosci; 2022 Feb 15; 10():39-62. PubMed ID: 34748709
    [Abstract] [Full Text] [Related]

  • 17. Characterization of Toll-like receptor gene expression and the pathogen agonist response in the antarctic bullhead notothen Notothenia coriiceps.
    Ahn DH, Shin SC, Park H.
    Immunogenetics; 2014 Oct 15; 66(9-10):563-73. PubMed ID: 25073429
    [Abstract] [Full Text] [Related]

  • 18. Biochemical adaptations of notothenioid fishes: comparisons between cold temperate South American and New Zealand species and Antarctic species.
    Coppes Petricorena ZL, Somero GN.
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Jul 15; 147(3):799-807. PubMed ID: 17293146
    [Abstract] [Full Text] [Related]

  • 19. New insights into evolution of IgT genes coming from Antarctic teleosts.
    Giacomelli S, Buonocore F, Albanese F, Scapigliati G, Gerdol M, Oreste U, Coscia MR.
    Mar Genomics; 2015 Dec 15; 24 Pt 1():55-68. PubMed ID: 26122835
    [Abstract] [Full Text] [Related]

  • 20. Two distinct types of fatty acid-binding protein are expressed in heart ventricle of Antarctic teleost fishes.
    Vayda ME, Londraville RL, Cashon RE, Costello L, Sidell BD.
    Biochem J; 1998 Feb 15; 330 ( Pt 1)(Pt 1):375-82. PubMed ID: 9461533
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.