These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
359 related items for PubMed ID: 22925013
1. Aptamer-guided silver-gold bimetallic nanostructures with highly active surface-enhanced Raman scattering for specific detection and near-infrared photothermal therapy of human breast cancer cells. Wu P, Gao Y, Zhang H, Cai C. Anal Chem; 2012 Sep 18; 84(18):7692-9. PubMed ID: 22925013 [Abstract] [Full Text] [Related]
2. High specific detection and near-infrared photothermal therapy of lung cancer cells with high SERS active aptamer-silver-gold shell-core nanostructures. Wu P, Gao Y, Lu Y, Zhang H, Cai C. Analyst; 2013 Nov 07; 138(21):6501-10. PubMed ID: 24040647 [Abstract] [Full Text] [Related]
3. Photothermal therapeutic response of cancer cells to aptamer-gold nanoparticle-hybridized graphene oxide under NIR illumination. Yang L, Tseng YT, Suo G, Chen L, Yu J, Chiu WJ, Huang CC, Lin CH. ACS Appl Mater Interfaces; 2015 Mar 11; 7(9):5097-106. PubMed ID: 25705789 [Abstract] [Full Text] [Related]
4. Raman Reporter-Coupled Ag(core)@Au(shell) Nanostars for in Vivo Improved Surface Enhanced Raman Scattering Imaging and Near-infrared-Triggered Photothermal Therapy in Breast Cancers. Zeng L, Pan Y, Wang S, Wang X, Zhao X, Ren W, Lu G, Wu A. ACS Appl Mater Interfaces; 2015 Aug 05; 7(30):16781-91. PubMed ID: 26204589 [Abstract] [Full Text] [Related]
5. Aptamer-Conjugated Au Nanocage/SiO2 Core-Shell Bifunctional Nanoprobes with High Stability and Biocompatibility for Cellular SERS Imaging and Near-Infrared Photothermal Therapy. Wen S, Miao X, Fan GC, Xu T, Jiang LP, Wu P, Cai C, Zhu JJ. ACS Sens; 2019 Feb 22; 4(2):301-308. PubMed ID: 30624040 [Abstract] [Full Text] [Related]
6. Dual-aptamer based electrochemical sandwich biosensor for MCF-7 human breast cancer cells using silver nanoparticle labels and a poly(glutamic acid)/MWNT nanocomposite. Yazdanparast S, Benvidi A, Banaei M, Nikukar H, Tezerjani MD, Azimzadeh M. Mikrochim Acta; 2018 Aug 09; 185(9):405. PubMed ID: 30094655 [Abstract] [Full Text] [Related]
7. Mesoporous silica-coated plasmonic nanostructures for surface-enhanced Raman scattering detection and photothermal therapy. Yang J, Shen D, Zhou L, Li W, Fan J, El-Toni AM, Zhang WX, Zhang F, Zhao D. Adv Healthc Mater; 2014 Oct 09; 3(10):1620-8. PubMed ID: 24665061 [Abstract] [Full Text] [Related]
8. Comparative study between the photodynamic ability of gold and silver nanoparticles in mediating cell death in breast and lung cancer cell lines. El-Hussein A, Mfouo-Tynga I, Abdel-Harith M, Abrahamse H. J Photochem Photobiol B; 2015 Dec 09; 153():67-75. PubMed ID: 26398813 [Abstract] [Full Text] [Related]
15. Tumor cell-specific photothermal killing by SELEX-derived DNA aptamer-targeted gold nanorods. Chandrasekaran R, Lee AS, Yap LW, Jans DA, Wagstaff KM, Cheng W. Nanoscale; 2016 Jan 07; 8(1):187-96. PubMed ID: 26646051 [Abstract] [Full Text] [Related]
16. The effects of conjugating anti-MUC1 aptamers on gold nanobipyramids and nanostars for photothermal cancer ablation. Navyatha B, Nara S. Nanomedicine (Lond); 2024 Jan 07; 19(24):1957-1975. PubMed ID: 39136402 [Abstract] [Full Text] [Related]
17. Aptamer-conjugated nanorods for targeted photothermal therapy of prostate cancer stem cells. Wang J, Sefah K, Altman MB, Chen T, You M, Zhao Z, Huang CZ, Tan W. Chem Asian J; 2013 Oct 07; 8(10):2417-22. PubMed ID: 23757285 [Abstract] [Full Text] [Related]