These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
235 related items for PubMed ID: 22933236
1. Lanosterol biosynthesis: the critical role of the methyl-29 group of 2,3-oxidosqualene for the correct folding of this substrate and for the construction of the five-membered D ring. Hoshino T, Chiba A, Abe N. Chemistry; 2012 Oct 08; 18(41):13108-16. PubMed ID: 22933236 [Abstract] [Full Text] [Related]
2. β-Amyrin Biosynthesis: The Methyl-30 Group of (3S)-2,3-Oxidosqualene Is More Critical to Its Correct Folding To Generate the Pentacyclic Scaffold than the Methyl-24 Group. Hoshino T, Miyahara Y, Hanaoka M, Takahashi K, Kaneko I. Chemistry; 2015 Oct 26; 21(44):15769-84. PubMed ID: 26351084 [Abstract] [Full Text] [Related]
3. Squalene-hopene cyclase: final deprotonation reaction, conformational analysis for the cyclization of (3R,S)-2,3-oxidosqualene and further evidence for the requirement of an isopropylidene moiety both for initiation of the polycyclization cascade and for the formation of the 5-membered E-ring. Hoshino T, Nakano S, Kondo T, Sato T, Miyoshi A. Org Biomol Chem; 2004 May 21; 2(10):1456-70. PubMed ID: 15136801 [Abstract] [Full Text] [Related]
6. Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase. Thoma R, Schulz-Gasch T, D'Arcy B, Benz J, Aebi J, Dehmlow H, Hennig M, Stihle M, Ruf A. Nature; 2004 Nov 04; 432(7013):118-22. PubMed ID: 15525992 [Abstract] [Full Text] [Related]
7. Biosynthetic Mechanism of Lanosterol: Cyclization. Chen N, Wang S, Smentek L, Hess BA, Wu R. Angew Chem Int Ed Engl; 2015 Jul 20; 54(30):8693-6. PubMed ID: 26069216 [Abstract] [Full Text] [Related]
9. Alicyclobacillus acidocaldarius Squalene-Hopene Cyclase: The Critical Role of Steric Bulk at Ala306 and the First Enzymatic Synthesis of Epoxydammarane from 2,3-Oxidosqualene. Ideno N, Umeyama S, Watanabe T, Nakajima M, Sato T, Hoshino T. Chembiochem; 2018 Sep 04; 19(17):1873-1886. PubMed ID: 29911308 [Abstract] [Full Text] [Related]
10. Mechanism and stereochemistry of enzymatic cyclization of 24,30-Bisnor-2,3-oxidosqualene by recombinant beta-amyrin synthase. Abe I, Sakano Y, Sodeyama M, Tanaka H, Noguchi H, Shibuya M, Ebizuka Y. J Am Chem Soc; 2004 Jun 09; 126(22):6880-1. PubMed ID: 15174853 [Abstract] [Full Text] [Related]
11. Mutation of isoleucine 705 of the oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae affects lanosterol's C/D-ring cyclization and 17α/β-exocyclic side chain stereochemistry. Wu TK, Chang YC, Liu YT, Chang CH, Wen HY, Li WH, Shie WS. Org Biomol Chem; 2011 Feb 21; 9(4):1092-7. PubMed ID: 21157613 [Abstract] [Full Text] [Related]
12. Oryza sativa Parkeol Cyclase: Changes in the Substrate-Folding Conformation and the Deprotonation Sites on Mutation at Tyr257: Importance of the Hydroxy Group and Steric Bulk. Suzuki A, Aikawa Y, Ito R, Hoshino T. Chembiochem; 2019 Nov 18; 20(22):2862-2875. PubMed ID: 31180162 [Abstract] [Full Text] [Related]
13. β-Amyrin synthase from Euphorbia tirucalli. Steric bulk, not the π-electrons of Phe, at position 474 has a key role in affording the correct folding of the substrate to complete the normal polycyclization cascade. Ito R, Masukawa Y, Nakada C, Amari K, Nakano C, Hoshino T. Org Biomol Chem; 2014 Jun 21; 12(23):3836-46. PubMed ID: 24695673 [Abstract] [Full Text] [Related]
14. β-Amyrin biosynthesis: the critical role of steric volume at C-19 of 2,3-oxidosqualene for its correct folding to generate the pentacyclic scaffold. Hoshino T, Yamaguchi Y, Takahashi K, Ito R. Org Lett; 2014 Jul 03; 16(13):3548-51. PubMed ID: 24960408 [Abstract] [Full Text] [Related]
15. Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase: a chemistry-biology interdisciplinary study of the protein's structure-function-reaction mechanism relationships. Wu TK, Chang CH, Liu YT, Wang TT. Chem Rec; 2008 Jul 03; 8(5):302-25. PubMed ID: 18956480 [Abstract] [Full Text] [Related]
16. Alteration of the substrate's prefolded conformation and cyclization stereochemistry of oxidosqualene-lanosterol cyclase of Saccharomyces cerevisiae by substitution at phenylalanine 699. Wu TK, Chang CH, Wen HY, Liu YT, Li WH, Wang TT, Shie WS. Org Lett; 2010 Feb 05; 12(3):500-3. PubMed ID: 20055456 [Abstract] [Full Text] [Related]
17. β-Amyrin Biosynthesis: Promiscuity for Steric Bulk at Position 23 in the Oxidosqualene Substrate and the Significance of Hydrophobic Interaction between the Methyl Group at Position 30 and the Binding Site. Kaneko I, Hoshino T. J Org Chem; 2016 Aug 05; 81(15):6657-71. PubMed ID: 27419810 [Abstract] [Full Text] [Related]
18. Enzymatic cyclization of 22,23-dihydro-2,3-oxidosqualene into euph-7-en-3beta-ol and bacchar-12-en-3beta-ol by recombinant beta-amyrin synthase. Abe I, Sakano Y, Tanaka H, Lou W, Noguchi H, Shibuya M, Ebizuka Y. J Am Chem Soc; 2004 Mar 24; 126(11):3426-7. PubMed ID: 15025461 [Abstract] [Full Text] [Related]
19. Production of epoxydammaranes by the enzymatic reactions of (3R)- and (3S)-2,3-squalene diols and those of 2,3:22,23-dioxidosqualenes with recombinant squalene cyclase and the mechanistic insight into the polycyclization reactions. Hoshino T, Yonemura Y, Abe T, Sugino Y. Org Biomol Chem; 2007 Mar 07; 5(5):792-801. PubMed ID: 17315066 [Abstract] [Full Text] [Related]
20. Enzyme redesign: two mutations cooperate to convert cycloartenol synthase into an accurate lanosterol synthase. Lodeiro S, Schulz-Gasch T, Matsuda SP. J Am Chem Soc; 2005 Oct 19; 127(41):14132-3. PubMed ID: 16218577 [Abstract] [Full Text] [Related] Page: [Next] [New Search]