These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
225 related items for PubMed ID: 22935727
1. Use of the isopycnic plots in designing operations of supercritical fluid chromatography. V. Pressure and density drops using mixtures of carbon dioxide and methanol as the mobile phase. Tarafder A, Kaczmarski K, Poe DP, Guiochon G. J Chromatogr A; 2012 Oct 05; 1258():136-51. PubMed ID: 22935727 [Abstract] [Full Text] [Related]
2. Use of the isopycnic plots in designing operations of supercritical fluid chromatography: IV. Pressure and density drops along columns. Tarafder A, Kaczmarski K, Ranger M, Poe DP, Guiochon G. J Chromatogr A; 2012 May 18; 1238():132-45. PubMed ID: 22503621 [Abstract] [Full Text] [Related]
3. Pressure, temperature and density drops along supercritical fluid chromatography columns. I. Experimental results for neat carbon dioxide and columns packed with 3- and 5-micron particles. Poe DP, Veit D, Ranger M, Kaczmarski K, Tarafder A, Guiochon G. J Chromatogr A; 2012 Aug 10; 1250():105-14. PubMed ID: 22521956 [Abstract] [Full Text] [Related]
4. Pressure, temperature and density drops along supercritical fluid chromatography columns in different thermal environments. III. Mixtures of carbon dioxide and methanol as the mobile phase. Poe DP, Veit D, Ranger M, Kaczmarski K, Tarafder A, Guiochon G. J Chromatogr A; 2014 Jan 03; 1323():143-56. PubMed ID: 24315126 [Abstract] [Full Text] [Related]
5. Pressure, temperature and density drops along supercritical fluid chromatography columns. II. Theoretical simulation for neat carbon dioxide and columns packed with 3-μm particles. Kaczmarski K, Poe DP, Tarafder A, Guiochon G. J Chromatogr A; 2012 Aug 10; 1250():115-23. PubMed ID: 22687711 [Abstract] [Full Text] [Related]
10. Unexpected retention behavior of supercritical fluid chromatography at the low density near critical region of carbon dioxide. Tarafder A, Guiochon G. J Chromatogr A; 2012 Mar 16; 1229():249-59. PubMed ID: 22310277 [Abstract] [Full Text] [Related]
11. Stationary phases for packed-column supercritical fluid chromatography. Poole CF. J Chromatogr A; 2012 Aug 10; 1250():157-71. PubMed ID: 22209357 [Abstract] [Full Text] [Related]
15. Accurate measurements of experimental parameters in supercritical fluid chromatography. I. Extent of variations of the mass and volumetric flow rates. Tarafder A, Guiochon G. J Chromatogr A; 2013 Apr 12; 1285():148-58. PubMed ID: 23477796 [Abstract] [Full Text] [Related]
16. Kinetic behaviour in supercritical fluid chromatography with modified mobile phase for 5 μm particle size and varied flow rates. Lesellier E, Fougere L, Poe DP. J Chromatogr A; 2011 Apr 15; 1218(15):2058-64. PubMed ID: 21232748 [Abstract] [Full Text] [Related]
17. Comparison of large scale purification processes of naproxen enantiomers by chromatography using methanol-water and methanol-supercritical carbon dioxide mobile phases. Kamarei F, Vajda P, Guiochon G. J Chromatogr A; 2013 Sep 20; 1308():132-8. PubMed ID: 23958697 [Abstract] [Full Text] [Related]
19. Extended zones of operations in supercritical fluid chromatography. Tarafder A, Guiochon G. J Chromatogr A; 2012 Nov 23; 1265():165-75. PubMed ID: 23084824 [Abstract] [Full Text] [Related]
20. Characterization and use of hydrophilic interaction liquid chromatography type stationary phases in supercritical fluid chromatography. West C, Khater S, Lesellier E. J Chromatogr A; 2012 Aug 10; 1250():182-95. PubMed ID: 22647190 [Abstract] [Full Text] [Related] Page: [Next] [New Search]