These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


423 related items for PubMed ID: 22945941

  • 41. Laccases 2 & 3 as biomarkers of Botrytis cinerea infection in sweet white wines.
    Ployon S, Attina A, Vialaret J, Walker AS, Hirtz C, Saucier C.
    Food Chem; 2020 Jun 15; 315():126233. PubMed ID: 32018078
    [Abstract] [Full Text] [Related]

  • 42. Chitinase family genes in grape differentially expressed in a manner specific to fruit species in response to Botrytis cinerea.
    Zheng T, Zhang K, Sadeghnezhad E, Jiu S, Zhu X, Dong T, Liu Z, Guan L, Jia H, Fang J.
    Mol Biol Rep; 2020 Oct 15; 47(10):7349-7363. PubMed ID: 32914265
    [Abstract] [Full Text] [Related]

  • 43. Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation.
    Davies C, Shin R, Liu W, Thomas MR, Schachtman DP.
    J Exp Bot; 2006 Oct 15; 57(12):3209-16. PubMed ID: 16936223
    [Abstract] [Full Text] [Related]

  • 44. Suppression of Botrytis cinerea on necrotic grapevine tissues by early-season applications of natural products and biological control agents.
    Calvo-Garrido C, Viñas I, Elmer PA, Usall J, Teixidó N.
    Pest Manag Sci; 2014 Apr 15; 70(4):595-602. PubMed ID: 23744713
    [Abstract] [Full Text] [Related]

  • 45. Co-evolution between Grapevine rupestris stem pitting-associated virus and Vitis vinifera L. leads to decreased defence responses and increased transcription of genes related to photosynthesis.
    Gambino G, Cuozzo D, Fasoli M, Pagliarani C, Vitali M, Boccacci P, Pezzotti M, Mannini F.
    J Exp Bot; 2012 Oct 15; 63(16):5919-33. PubMed ID: 22987838
    [Abstract] [Full Text] [Related]

  • 46. Influence of carvacrol on survival of Botrytis cinerea inoculated in table grapes.
    Martínez-Romero D, Guillén F, Valverde JM, Bailén G, Zapata P, Serrano M, Castillo S, Valero D.
    Int J Food Microbiol; 2007 Apr 10; 115(2):144-8. PubMed ID: 17141907
    [Abstract] [Full Text] [Related]

  • 47. The Induction of Noble Rot (Botrytis cinerea) Infection during Postharvest Withering Changes the Metabolome of Grapevine Berries (Vitis vinifera L., cv. Garganega).
    Negri S, Lovato A, Boscaini F, Salvetti E, Torriani S, Commisso M, Danzi R, Ugliano M, Polverari A, Tornielli GB, Guzzo F.
    Front Plant Sci; 2017 Apr 10; 8():1002. PubMed ID: 28680428
    [Abstract] [Full Text] [Related]

  • 48. A GC-MS untargeted metabolomics approach for the classification of chemical differences in grape juices based on fungal pathogen.
    Schueuermann C, Steel CC, Blackman JW, Clark AC, Schwarz LJ, Moraga J, Collado IG, Schmidtke LM.
    Food Chem; 2019 Jan 01; 270():375-384. PubMed ID: 30174061
    [Abstract] [Full Text] [Related]

  • 49. Occurrence of Botrytis cinerea and Subsequent Disease Expression at Different Positions on Leaves and Bunches of Grape.
    Holz G, Gütschow M, Coertze S, Calitz FJ.
    Plant Dis; 2003 Apr 01; 87(4):351-358. PubMed ID: 30831828
    [Abstract] [Full Text] [Related]

  • 50. Botrytis pseudocinerea, a new cryptic species causing gray mold in French vineyards in sympatry with Botrytis cinerea.
    Walker AS, Gautier AL, Confais J, Martinho D, Viaud M, Le P Cheur P, Dupont J, Fournier E.
    Phytopathology; 2011 Dec 01; 101(12):1433-45. PubMed ID: 21830954
    [Abstract] [Full Text] [Related]

  • 51. Dual Transcriptome and Metabolic Analysis of Vitis vinifera cv. Pinot Noir Berry and Botrytis cinerea During Quiescence and Egressed Infection.
    Haile ZM, Malacarne G, Pilati S, Sonego P, Moretto M, Masuero D, Vrhovsek U, Engelen K, Baraldi E, Moser C.
    Front Plant Sci; 2019 Dec 01; 10():1704. PubMed ID: 32082332
    [Abstract] [Full Text] [Related]

  • 52. Postharvest grape infection of Botrytis cinerea and its interactions with other moulds under withering conditions to produce noble-rotten grapes.
    Lorenzini M, Azzolini M, Tosi E, Zapparoli G.
    J Appl Microbiol; 2013 Mar 01; 114(3):762-70. PubMed ID: 23163324
    [Abstract] [Full Text] [Related]

  • 53. Transcriptional, hormonal, and metabolic changes in susceptible grape berries under powdery mildew infection.
    Pimentel D, Amaro R, Erban A, Mauri N, Soares F, Rego C, Martínez-Zapater JM, Mithöfer A, Kopka J, Fortes AM.
    J Exp Bot; 2021 Sep 30; 72(18):6544-6569. PubMed ID: 34106234
    [Abstract] [Full Text] [Related]

  • 54. Evidence for protein degradation by Botrytis cinerea and relationships with alteration of synthetic wine foaming properties.
    Marchal R, Warchol M, Cilindre C, Jeandet P.
    J Agric Food Chem; 2006 Jul 12; 54(14):5157-65. PubMed ID: 16819930
    [Abstract] [Full Text] [Related]

  • 55. Overexpression of VvWRKY2 in tobacco enhances broad resistance to necrotrophic fungal pathogens.
    Mzid R, Marchive C, Blancard D, Deluc L, Barrieu F, Corio-Costet MF, Drira N, Hamdi S, Lauvergeat V.
    Physiol Plant; 2007 Nov 12; 131(3):434-47. PubMed ID: 18251882
    [Abstract] [Full Text] [Related]

  • 56. Mode of action of a fatty acid-based natural product to control Botrytis cinerea in grapes.
    Calvo-Garrido C, Elmer PA, Parry FJ, Viñas I, Usall J, Torres R, Agnew RH, Teixidó N.
    J Appl Microbiol; 2014 Apr 12; 116(4):967-79. PubMed ID: 24387715
    [Abstract] [Full Text] [Related]

  • 57. Quantification of Botrytis cinerea in Grapevine Bunch Trash by Real-Time PCR.
    Si Ammour M, Fedele G, Morcia C, Terzi V, Rossi V.
    Phytopathology; 2019 Jul 12; 109(7):1312-1319. PubMed ID: 30785375
    [Abstract] [Full Text] [Related]

  • 58. Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity.
    Kliebenstein DJ, Rowe HC, Denby KJ.
    Plant J; 2005 Oct 12; 44(1):25-36. PubMed ID: 16167893
    [Abstract] [Full Text] [Related]

  • 59. Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.).
    Savoi S, Wong DC, Arapitsas P, Miculan M, Bucchetti B, Peterlunger E, Fait A, Mattivi F, Castellarin SD.
    BMC Plant Biol; 2016 Mar 21; 16():67. PubMed ID: 27001212
    [Abstract] [Full Text] [Related]

  • 60. Validation of a predictive model for the growth of Botrytis cinerea and Penicillium expansum on grape berries.
    Judet-Correia D, Bollaert S, Duquenne A, Charpentier C, Bensoussan M, Dantigny P.
    Int J Food Microbiol; 2010 Aug 15; 142(1-2):106-13. PubMed ID: 20619474
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 22.