These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
423 related items for PubMed ID: 22945941
61. A multidisciplinary study on the effects of phloem-limited viruses on the agronomical performance and berry quality of Vitis vinifera cv. Nebbiolo. Giribaldi M, Purrotti M, Pacifico D, Santini D, Mannini F, Caciagli P, Rolle L, Cavallarin L, Giuffrida MG, Marzachì C. J Proteomics; 2011 Dec 10; 75(1):306-15. PubMed ID: 21856458 [Abstract] [Full Text] [Related]
73. Screening Vitis Genotypes for Responses to Botrytis cinerea and Evaluation of Antioxidant Enzymes, Reactive Oxygen Species and Jasmonic Acid in Resistant and Susceptible Hosts. Rahman MU, Hanif M, Wan R, Hou X, Ahmad B, Wang X. Molecules; 2018 Dec 20; 24(1):. PubMed ID: 30577474 [Abstract] [Full Text] [Related]
74. The nature of tobacco resistance against Botrytis cinerea depends on the infection structures of the pathogen. El Oirdi M, Trapani A, Bouarab K. Environ Microbiol; 2010 Jan 20; 12(1):239-53. PubMed ID: 19799622 [Abstract] [Full Text] [Related]
75. Transcriptional and metabolic profiling of grape (Vitis vinifera L.) leaves unravel possible innate resistance against pathogenic fungi. Figueiredo A, Fortes AM, Ferreira S, Sebastiana M, Choi YH, Sousa L, Acioli-Santos B, Pessoa F, Verpoorte R, Pais MS. J Exp Bot; 2008 Jan 20; 59(12):3371-81. PubMed ID: 18648103 [Abstract] [Full Text] [Related]
76. Effects of Exogenous Nitric Oxide Treatment on Grape Berries Against Botrytis cinerea and Alternaria alternata Related Enzymes and Metabolites. Shi J, Huang D, Du Y, Zhu S, Hussain Z, Haider MS, Anwar R. Plant Dis; 2023 May 20; 107(5):1510-1521. PubMed ID: 36324205 [Abstract] [Full Text] [Related]
77. Detection and prediction of Botrytis cinerea infection levels in wine grapes using volatile analysis. Jiang L, Qiu Y, Dumlao MC, Donald WA, Steel CC, Schmidtke LM. Food Chem; 2023 Sep 30; 421():136120. PubMed ID: 37098308 [Abstract] [Full Text] [Related]
78. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions? Chagué V, Danit LV, Siewers V, Schulze-Gronover C, Tudzynski P, Tudzynski B, Sharon A. Mol Plant Microbe Interact; 2006 Jan 30; 19(1):33-42. PubMed ID: 16404951 [Abstract] [Full Text] [Related]
79. Oligogalacturonide signal transduction, induction of defense-related responses and protection of grapevine against Botrytis cinerea. Aziz A, Heyraud A, Lambert B. Planta; 2004 Mar 30; 218(5):767-74. PubMed ID: 14618326 [Abstract] [Full Text] [Related]
80. Vitis vinifera canes, a new source of antifungal compounds against Plasmopara viticola, Erysiphe necator, and Botrytis cinerea. Schnee S, Queiroz EF, Voinesco F, Marcourt L, Dubuis PH, Wolfender JL, Gindro K. J Agric Food Chem; 2013 Jun 12; 61(23):5459-67. PubMed ID: 23730921 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]