These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


198 related items for PubMed ID: 22946308

  • 21. [Effect of the hypoxia training on the sensitivity of phenylarsineoxide-induced mitochondrial permeability transition pore opening in the rat heart].
    Vavilova HL, Serebrovs'ka TV, Rudyk OV, Bielikova MV, Koliesnikova IeE, Kukoba TV, Sahach VF.
    Fiziol Zh (1994); 2005; 51(4):3-12. PubMed ID: 16201144
    [Abstract] [Full Text] [Related]

  • 22. Effects of intermittent hypoxia training on exercise performance, hemodynamics, and ventilation in healthy senior men.
    Shatilo VB, Korkushko OV, Ischuk VA, Downey HF, Serebrovskaya TV.
    High Alt Med Biol; 2008; 9(1):43-52. PubMed ID: 18331220
    [Abstract] [Full Text] [Related]

  • 23. Intermittent hypoxia research in the former soviet union and the commonwealth of independent States: history and review of the concept and selected applications.
    Serebrovskaya TV.
    High Alt Med Biol; 2002; 3(2):205-21. PubMed ID: 12162864
    [Abstract] [Full Text] [Related]

  • 24. Monocytes and dendritic cells in a hypoxic environment: Spotlights on chemotaxis and migration.
    Bosco MC, Puppo M, Blengio F, Fraone T, Cappello P, Giovarelli M, Varesio L.
    Immunobiology; 2008; 213(9-10):733-49. PubMed ID: 18926289
    [Abstract] [Full Text] [Related]

  • 25. Adaptive Effects of Intermittent Hypoxia Training on Oxygen-Dependent Processes as a Potential Therapeutic Strategy Tool.
    Kurhaluk N, Lukash O, Kamiński P, Tkaczenko H.
    Cell Physiol Biochem; 2024 Jun 10; 58(3):226-249. PubMed ID: 38857359
    [Abstract] [Full Text] [Related]

  • 26. Influence of intermittent hypoxic training on muscle energetics and exercise tolerance.
    Holliss BA, Fulford J, Vanhatalo A, Pedlar CR, Jones AM.
    J Appl Physiol (1985); 2013 Mar 01; 114(5):611-9. PubMed ID: 23305980
    [Abstract] [Full Text] [Related]

  • 27. Erythropoietin acute reaction and haematological adaptations to short, intermittent hypobaric hypoxia.
    Rodríguez FA, Ventura JL, Casas M, Casas H, Pagés T, Rama R, Ricart A, Palacios L, Viscor G.
    Eur J Appl Physiol; 2000 Jun 01; 82(3):170-7. PubMed ID: 10929210
    [Abstract] [Full Text] [Related]

  • 28. [Tuberculosis in compromised hosts].
    Kekkaku; 2003 Nov 01; 78(11):717-22. PubMed ID: 14672050
    [Abstract] [Full Text] [Related]

  • 29. Erythropoietin as a possible mechanism for the effects of intermittent hypoxia on bodyweight, serum glucose and leptin in mice.
    Qin L, Xiang Y, Song Z, Jing R, Hu C, Howard ST.
    Regul Pept; 2010 Dec 10; 165(2-3):168-73. PubMed ID: 20655957
    [Abstract] [Full Text] [Related]

  • 30. [Immune reactivity and cytokine status in polytrauma].
    Mkhoian GG, Ter-Pogosian ZR, Gasparian MG, Dzhagatspanian NG, Karalian ZA, Ovanesian GG.
    Anesteziol Reanimatol; 2009 Dec 10; (4):60-5. PubMed ID: 19824419
    [Abstract] [Full Text] [Related]

  • 31. [Intermittent hypoxic training with exogenous nitric oxide improves rat liver mitochondrial oxidation and phosphorylation during acute hypoxia].
    Serebrovs'ka TV, Kurgaliuk NM, Nosar VI, Kolesnikova IeE.
    Fiziol Zh (1994); 2001 Dec 10; 47(1):85-92. PubMed ID: 11296563
    [Abstract] [Full Text] [Related]

  • 32. Team-Sport Athletes' Improvement of Performance on the Yo-Yo Intermittent Recovery Test Level 2, but Not of Time-Trial Performance, With Intermittent Hypoxic Training.
    Inness M WH, Billaut F, Aughey RJ.
    Int J Sports Physiol Perform; 2016 Jan 10; 11(1):15-21. PubMed ID: 25848937
    [Abstract] [Full Text] [Related]

  • 33. Heart rate and blood pressure responses during hypoxic cycles of a 3-week intermittent hypoxia breathing program in patients at risk for or with mild COPD.
    Faulhaber M, Gatterer H, Haider T, Linser T, Netzer N, Burtscher M.
    Int J Chron Obstruct Pulmon Dis; 2015 Jan 10; 10():339-45. PubMed ID: 25709428
    [Abstract] [Full Text] [Related]

  • 34. Blood flow restriction exercise stimulates mobilization of hematopoietic stem/progenitor cells and increases the circulating ACE2 levels in healthy adults.
    Joshi S, Mahoney S, Jahan J, Pitts L, Hackney KJ, Jarajapu YP.
    J Appl Physiol (1985); 2020 May 01; 128(5):1423-1431. PubMed ID: 32324479
    [Abstract] [Full Text] [Related]

  • 35. [Individual characteristics of human adaptation to intermittent hypoxia: possible role of genetic mechanisms].
    Serebrovs'ka TV, Korkushko OV, Shatylo VB, Asanov EO, Ishchuk VO, Moiseienko IeV, Drevyts'ka TI, Man'kovs'ka IM.
    Fiziol Zh (1994); 2007 May 01; 53(2):16-24. PubMed ID: 17595907
    [Abstract] [Full Text] [Related]

  • 36. Exercise increases the frequency of circulating hematopoietic progenitor cells, but reduces hematopoietic colony-forming capacity.
    Kroepfl JM, Pekovits K, Stelzer I, Fuchs R, Zelzer S, Hofmann P, Sedlmayr P, Dohr G, Wallner-Liebmann S, Domej W, Mueller W.
    Stem Cells Dev; 2012 Nov 01; 21(16):2915-25. PubMed ID: 22616638
    [Abstract] [Full Text] [Related]

  • 37. Macrophage oxygen sensing modulates antigen presentation and phagocytic functions involving IFN-gamma production through the HIF-1 alpha transcription factor.
    Acosta-Iborra B, Elorza A, Olazabal IM, Martín-Cofreces NB, Martin-Puig S, Miró M, Calzada MJ, Aragonés J, Sánchez-Madrid F, Landázuri MO.
    J Immunol; 2009 Mar 01; 182(5):3155-64. PubMed ID: 19234213
    [Abstract] [Full Text] [Related]

  • 38. Systemic hypoxia enhances bactericidal activities of human polymorphonuclear leuocytes.
    Wang JS, Liu HC.
    Clin Sci (Lond); 2009 May 01; 116(11):805-17. PubMed ID: 19053944
    [Abstract] [Full Text] [Related]

  • 39. [The role of the liver macrophage system in decreasing the immune complex level of the blood during adaptation to periodic hypoxia].
    Meerson FZ, Frolov BA, Nikonorov AA, Tverdokhlib VP.
    Biull Eksp Biol Med; 1992 Nov 01; 114(11):461-3. PubMed ID: 1290808
    [Abstract] [Full Text] [Related]

  • 40. Oxygen tension alters the effects of cytokines on the megakaryocyte, erythrocyte, and granulocyte lineages.
    LaIuppa JA, Papoutsakis ET, Miller WM.
    Exp Hematol; 1998 Aug 01; 26(9):835-43. PubMed ID: 9694504
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.