These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
176 related items for PubMed ID: 22949829
1. Structural and catalytic differences between two FADH(2)-dependent monooxygenases: 2,4,5-TCP 4-monooxygenase (TftD) from Burkholderia cepacia AC1100 and 2,4,6-TCP 4-monooxygenase (TcpA) from Cupriavidus necator JMP134. Hayes RP, Webb BN, Subramanian AK, Nissen M, Popchock A, Xun L, Kang C. Int J Mol Sci; 2012; 13(8):9769-9784. PubMed ID: 22949829 [Abstract] [Full Text] [Related]
2. Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:FAD oxidoreductase (TftC) of Burkholderia cepacia AC1100. Webb BN, Ballinger JW, Kim E, Belchik SM, Lam KS, Youn B, Nissen MS, Xun L, Kang C. J Biol Chem; 2010 Jan 15; 285(3):2014-27. PubMed ID: 19915006 [Abstract] [Full Text] [Related]
3. Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:flavin adenine dinucleotide oxidoreductase (TftC) of Burkholderia cepacia AC1100. Gisi MR, Xun L. J Bacteriol; 2003 May 15; 185(9):2786-92. PubMed ID: 12700257 [Abstract] [Full Text] [Related]
4. Genetic and biochemical characterization of a 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. Louie TM, Webster CM, Xun L. J Bacteriol; 2002 Jul 15; 184(13):3492-500. PubMed ID: 12057943 [Abstract] [Full Text] [Related]
5. Functions of flavin reductase and quinone reductase in 2,4,6-trichlorophenol degradation by Cupriavidus necator JMP134. Belchik SM, Xun L. J Bacteriol; 2008 Mar 15; 190(5):1615-9. PubMed ID: 18165297 [Abstract] [Full Text] [Related]
6. Purification and characterization of 2,4,6-trichlorophenol-4-monooxygenase, a dehalogenating enzyme from Azotobacter sp. strain GP1. Wieser M, Wagner B, Eberspächer J, Lingens F. J Bacteriol; 1997 Jan 15; 179(1):202-8. PubMed ID: 8981999 [Abstract] [Full Text] [Related]
7. Purification and characterization of chlorophenol 4-monooxygenase from Burkholderia cepacia AC1100. Xun L. J Bacteriol; 1996 May 15; 178(9):2645-9. PubMed ID: 8626333 [Abstract] [Full Text] [Related]
8. Single-Component and Two-Component para-Nitrophenol Monooxygenases: Structural Basis for Their Catalytic Difference. Guo Y, Li DF, Zheng J, Xu Y, Zhou NY. Appl Environ Microbiol; 2021 Oct 28; 87(22):e0117121. PubMed ID: 34469195 [Abstract] [Full Text] [Related]
9. Purification and catalytic properties of the chlorophenol 4-monooxygenase from Burkholderia cepacia strain AC1100. Martin-Le Garrec G, Artaud I, Capeillère-Blandin C. Biochim Biophys Acta; 2001 Jun 11; 1547(2):288-301. PubMed ID: 11410285 [Abstract] [Full Text] [Related]
10. A monooxygenase catalyzes sequential dechlorinations of 2,4,6-trichlorophenol by oxidative and hydrolytic reactions. Xun L, Webster CM. J Biol Chem; 2004 Feb 20; 279(8):6696-700. PubMed ID: 14662756 [Abstract] [Full Text] [Related]
11. Genes for 2,4,5-trichlorophenoxyacetic acid metabolism in Burkholderia cepacia AC1100: characterization of the tftC and tftD genes and locations of the tft operons on multiple replicons. Hübner A, Danganan CE, Xun L, Chakrabarty AM, Hendrickson W. Appl Environ Microbiol; 1998 Jun 20; 64(6):2086-93. PubMed ID: 9603818 [Abstract] [Full Text] [Related]
12. Genetic characterization of 2,4,6-trichlorophenol degradation in Cupriavidus necator JMP134. Sánchez MA, González B. Appl Environ Microbiol; 2007 May 20; 73(9):2769-76. PubMed ID: 17322325 [Abstract] [Full Text] [Related]
13. Structural insights into a flavin-dependent dehalogenase HadA explain catalysis and substrate inhibition via quadruple π-stacking. Pimviriyakul P, Jaruwat A, Chitnumsub P, Chaiyen P. J Biol Chem; 2021 Aug 20; 297(2):100952. PubMed ID: 34252455 [Abstract] [Full Text] [Related]
14. Hydroxylation reaction catalyzed by the Burkholderia cepacia AC1100 bacterial strain. Involvement of the chlorophenol-4-monooxygenase. Martin G, Dijols S, Capeillere-Blandin C, Artaud I. Eur J Biochem; 1999 Apr 20; 261(2):533-9. PubMed ID: 10215866 [Abstract] [Full Text] [Related]
15. Ortho and para oxydehalogenation of dihalophenols catalyzed by the monooxygenase TcpA and NAD(P)H:FAD reductase Fre. Fang L, Qin H, Shi T, Wu X, Li QX, Hua R. J Hazard Mater; 2020 Apr 15; 388():121787. PubMed ID: 31818658 [Abstract] [Full Text] [Related]
16. Kinetics and Catabolic Pathways of the Insecticide Chlorpyrifos, Annotation of the Degradation Genes, and Characterization of Enzymes TcpA and Fre in Cupriavidus nantongensis X1T. Fang L, Shi T, Chen Y, Wu X, Zhang C, Tang X, Li QX, Hua R. J Agric Food Chem; 2019 Feb 27; 67(8):2245-2254. PubMed ID: 30721044 [Abstract] [Full Text] [Related]
17. Nitronate monooxygenase, a model for anionic flavin semiquinone intermediates in oxidative catalysis. Gadda G, Francis K. Arch Biochem Biophys; 2010 Jan 01; 493(1):53-61. PubMed ID: 19577534 [Abstract] [Full Text] [Related]
18. Characterization of 4-hydroxyphenylacetate 3-hydroxylase (HpaB) of Escherichia coli as a reduced flavin adenine dinucleotide-utilizing monooxygenase. Xun L, Sandvik ER. Appl Environ Microbiol; 2000 Feb 01; 66(2):481-6. PubMed ID: 10653707 [Abstract] [Full Text] [Related]
19. 2,4-dichlorophenoxyacetate/alpha-ketoglutarate dioxygenases from Burkholderia cepacia 2a and Ralstonia eutropha JMP134. Poh R, Xia X, Bruce IJ, Smith AR. Microbios; 2001 Feb 01; 105(410):43-63. PubMed ID: 11368091 [Abstract] [Full Text] [Related]