These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


165 related items for PubMed ID: 22949884

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Application of statistical experimental design to optimize culture requirements of Aspergillus sp. Zh-26 producing xylanase for degradation of arabinoxylans in mashing.
    Li Y, Liu Z, Cui F, Xu Y, Zhao H, Liu Z.
    J Food Sci; 2007 Jun; 72(5):E320-9. PubMed ID: 17995733
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Sequential optimization of xylanase production using Sapindus mukorossi seed waste in Lechevalieria aerocolonigenes.
    Pawar R, Pawar S, Rathod V.
    Prep Biochem Biotechnol; 2022 Jun; 52(2):135-143. PubMed ID: 34533428
    [Abstract] [Full Text] [Related]

  • 5. Improvement of xylanase production by thermophilic fungus Thermomyces lanuginosus SDYKY-1 using response surface methodology.
    Su Y, Zhang X, Hou Z, Zhu X, Guo X, Ling P.
    N Biotechnol; 2011 Jan 31; 28(1):40-6. PubMed ID: 20541633
    [Abstract] [Full Text] [Related]

  • 6. Optimization of medium composition for alkali-stable xylanase production by Aspergillus fischeri Fxn 1 in solid-state fermentation using central composite rotary design.
    Senthilkumar SR, Ashokkumar B, Chandra Raj K, Gunasekaran P.
    Bioresour Technol; 2005 Aug 31; 96(12):1380-6. PubMed ID: 15792586
    [Abstract] [Full Text] [Related]

  • 7. Plackett-Burman design and response surface optimization of conditions for culturing Saccharomyces cerevisiae in Agaricus bisporus industrial wastewater.
    Huang J, Zhang G, Zheng L, Lin Z, Wu Q, Pan Y.
    Acta Sci Pol Technol Aliment; 2019 Aug 31; 18(1):65-74. PubMed ID: 30927753
    [Abstract] [Full Text] [Related]

  • 8. Optimization of cellulase-free xylanase production by thermophilic Streptomyces thermovulgaris TISTR1948 through Plackett-Burman and response surface methodological approaches.
    Chaiyaso T, Kuntiya A, Techapun C, Leksawasdi N, Seesuriyachan P, Hanmoungjai P.
    Biosci Biotechnol Biochem; 2011 Aug 31; 75(3):531-7. PubMed ID: 21389598
    [Abstract] [Full Text] [Related]

  • 9. Screening of nutrient parameters for mevastatin production by Penicillium citrinum MTCC 1256 under submerged fermentation using the Plackett-Burman design.
    Ahmad A, Panda BP, Mujeeb M.
    J Pharm Bioallied Sci; 2010 Jan 31; 2(1):44-6. PubMed ID: 21814430
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Optimization, purification, and characterization of xylanase production by a newly isolated Trichoderma harzianum strain by a two-step statistical experimental design strategy.
    Dhaver P, Pletschke B, Sithole B, Govinden R.
    Sci Rep; 2022 Oct 22; 12(1):17791. PubMed ID: 36273028
    [Abstract] [Full Text] [Related]

  • 12. Use of Wheat Straw for Value-Added Product Xylanase by Penicillium chrysogenum Strain A3 DSM105774.
    Matrawy AA, Khalil AI, Marey HS, Embaby AM.
    J Fungi (Basel); 2021 Aug 27; 7(9):. PubMed ID: 34575734
    [Abstract] [Full Text] [Related]

  • 13. Biosynthesis, molecular modeling and statistical optimization of xylanase from a mangrove associated actinobacterium Streptomyces variabilis (MAB3) using Box-Behnken design with its bioconversion efficacy.
    Sanjivkumar M, Silambarasan T, Balagurunathan R, Immanuel G.
    Int J Biol Macromol; 2018 Oct 15; 118(Pt A):195-208. PubMed ID: 29909037
    [Abstract] [Full Text] [Related]

  • 14. Xylanase production using agro-residue in solid-state fermentation from Bacillus pumilus ASH for biodelignification of wheat straw pulp.
    Garg G, Mahajan R, Kaur A, Sharma J.
    Biodegradation; 2011 Nov 15; 22(6):1143-54. PubMed ID: 21437760
    [Abstract] [Full Text] [Related]

  • 15. Alkaline xylanases from Bacillus mojavensis A21: production and generation of xylooligosaccharides.
    Haddar A, Driss D, Frikha F, Ellouz-Chaabouni S, Nasri M.
    Int J Biol Macromol; 2012 Nov 15; 51(4):647-56. PubMed ID: 22771926
    [Abstract] [Full Text] [Related]

  • 16. Application of Plackett-Burman experimental design and Doehlert design to evaluate nutritional requirements for xylanase production by Alternaria mali ND-16.
    Li Y, Liu Z, Cui F, Liu Z, Zhao H.
    Appl Microbiol Biotechnol; 2007 Nov 15; 77(2):285-91. PubMed ID: 17846761
    [Abstract] [Full Text] [Related]

  • 17. Statistical Optimization and Partial Characterization of Xylanases Produced by Streptomyces sp. S1M3I Using Olive Pomace as a Fermentation Substrate.
    Medouni-Haroune L, Medouni-Adrar S, Houfani AA, Bouiche C, Azzouz Z, Roussos S, Desseaux V, Madani K, Kecha M.
    Appl Biochem Biotechnol; 2024 Apr 15; 196(4):2012-2030. PubMed ID: 37458941
    [Abstract] [Full Text] [Related]

  • 18. Statistical based experimental optimization for co-production of endo-glucanase and xylanase from Bacillus sonorensis BD92 with their application in biomass saccharification.
    Raza A, Bashir S, Tabassum R.
    Folia Microbiol (Praha); 2019 May 15; 64(3):295-305. PubMed ID: 30361878
    [Abstract] [Full Text] [Related]

  • 19. [Optimization of the medium and fermentation condition for the Penicillium aurantiocandidum Z12 strain with molluscicidal actions against Oncomelania hupensis].
    Xiong Y, Xu N, Huang J, Wang J, Wang Z, Jiang H, Tong Y, Yin J, Gong Y, Jiang Q, Zhou Y.
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2023 May 11; 35(2):137-146. PubMed ID: 37253562
    [Abstract] [Full Text] [Related]

  • 20. Enhanced production of a recombinant xylanase (XT6): optimization of production and purification, and scaled-up batch fermentation in a stirred tank bioreactor.
    Dhaver P, Sithole T, Pletschke B, Sithole B, Govinden R.
    Sci Rep; 2023 Nov 28; 13(1):20895. PubMed ID: 38017111
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.