These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
217 related items for PubMed ID: 22950871
1. Glycopolymer brushes for the affinity adsorption of RCA120: effects of thickness, grafting density, and epitope density. Meng XL, Fang Y, Wan LS, Huang XJ, Xu ZK. Langmuir; 2012 Sep 25; 28(38):13616-23. PubMed ID: 22950871 [Abstract] [Full Text] [Related]
2. Binding of Ricinus communis agglutinin to a galactose-carrying polymer brush on a colloidal gold monolayer. Mizukami K, Takakura H, Matsunaga T, Kitano H. Colloids Surf B Biointerfaces; 2008 Oct 01; 66(1):110-8. PubMed ID: 18614341 [Abstract] [Full Text] [Related]
3. Anti-nonspecific protein adsorption properties of biomimetic glycocalyx-like glycopolymer layers: effects of glycopolymer chain density and protein size. Yang Q, Kaul C, Ulbricht M. Langmuir; 2010 Apr 20; 26(8):5746-52. PubMed ID: 20104921 [Abstract] [Full Text] [Related]
4. Synthesis of functional polymer brushes containing carbohydrate residues in the pyranose form and their specific and nonspecific interactions with proteins. Yu K, Kizhakkedathu JN. Biomacromolecules; 2010 Nov 08; 11(11):3073-85. PubMed ID: 20954736 [Abstract] [Full Text] [Related]
5. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. Zhang Z, Chen S, Chang Y, Jiang S. J Phys Chem B; 2006 Jun 08; 110(22):10799-804. PubMed ID: 16771329 [Abstract] [Full Text] [Related]
6. Carbohydrate structure dependent hemocompatibility of biomimetic functional polymer brushes on surfaces. Yu K, Lai BF, Kizhakkedathu JN. Adv Healthc Mater; 2012 Mar 08; 1(2):199-213. PubMed ID: 23184724 [Abstract] [Full Text] [Related]
7. Evaluating the Thickness of Multivalent Glycopolymer Brushes for Lectin Binding. Lazar J, Park H, Rosencrantz RR, Böker A, Elling L, Schnakenberg U. Macromol Rapid Commun; 2015 Aug 08; 36(16):1472-8. PubMed ID: 26096302 [Abstract] [Full Text] [Related]
8. Facile surface immobilization of ATRP initiators on colloidal polymers for grafting brushes and application to colloidal crystals. Liu YY, Chen H, Ishizu K. Langmuir; 2011 Feb 01; 27(3):1168-74. PubMed ID: 21214212 [Abstract] [Full Text] [Related]
9. Glycopolymer brushes for specific lectin binding by controlled multivalent presentation of N-acetyllactosamine glycan oligomers. Park H, Rosencrantz RR, Elling L, Böker A. Macromol Rapid Commun; 2015 Jan 01; 36(1):45-54. PubMed ID: 25354386 [Abstract] [Full Text] [Related]
10. Kinetic study on the binding of lectin to mannose residues in a polymer brush. Kitano H, Takahashi Y, Mizukami K, Matsuura K. Colloids Surf B Biointerfaces; 2009 Apr 01; 70(1):91-7. PubMed ID: 19152782 [Abstract] [Full Text] [Related]
11. Aqueous fabrication of pH-gated, polymer-brush-modified alumina hybrid membranes. Sugnaux C, Lavanant L, Klok HA. Langmuir; 2013 Jun 18; 29(24):7325-33. PubMed ID: 23391159 [Abstract] [Full Text] [Related]
12. Binding of β-amyloid to sulfated sugar residues in a polymer brush. Kitano H, Saito D, Kamada T, Gemmei-Ide M. Colloids Surf B Biointerfaces; 2012 May 01; 93():219-25. PubMed ID: 22305636 [Abstract] [Full Text] [Related]
13. Ultralow fouling polyacrylamide on gold surfaces via surface-initiated atom transfer radical polymerization. Liu Q, Singh A, Lalani R, Liu L. Biomacromolecules; 2012 Apr 09; 13(4):1086-92. PubMed ID: 22385371 [Abstract] [Full Text] [Related]
14. Control of nanobiointerfaces generated from well-defined biomimetic polymer brushes for protein and cell manipulations. Iwata R, Suk-In P, Hoven VP, Takahara A, Akiyoshi K, Iwasaki Y. Biomacromolecules; 2004 Apr 09; 5(6):2308-14. PubMed ID: 15530046 [Abstract] [Full Text] [Related]
15. High capacity, charge-selective protein uptake by polyelectrolyte brushes. Kusumo A, Bombalski L, Lin Q, Matyjaszewski K, Schneider JW, Tilton RD. Langmuir; 2007 Apr 10; 23(8):4448-54. PubMed ID: 17358090 [Abstract] [Full Text] [Related]
16. Protein microarrays based on polymer brushes prepared via surface-initiated atom transfer radical polymerization. Barbey R, Kauffmann E, Ehrat M, Klok HA. Biomacromolecules; 2010 Dec 13; 11(12):3467-79. PubMed ID: 21090572 [Abstract] [Full Text] [Related]
17. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma. Kizhakkedathu JN, Janzen J, Le Y, Kainthan RK, Brooks DE. Langmuir; 2009 Apr 09; 25(6):3794-801. PubMed ID: 19708153 [Abstract] [Full Text] [Related]
18. Recognition of sugars on surface-bound cap-shaped gold particles modified with a polymer brush. Anraku Y, Takahashi Y, Kitano H, Hakari M. Colloids Surf B Biointerfaces; 2007 May 15; 57(1):61-8. PubMed ID: 17307342 [Abstract] [Full Text] [Related]
19. A substrate-independent method for surface grafting polymer layers by atom transfer radical polymerization: reduction of protein adsorption. Coad BR, Lu Y, Meagher L. Acta Biomater; 2012 Feb 15; 8(2):608-18. PubMed ID: 22023749 [Abstract] [Full Text] [Related]
20. Construction of a comb-like glycosylated membrane surface by a combination of UV-induced graft polymerization and surface-initiated ATRP. Yang Q, Tian J, Hu MX, Xu ZK. Langmuir; 2007 Jun 05; 23(12):6684-90. PubMed ID: 17497813 [Abstract] [Full Text] [Related] Page: [Next] [New Search]